Câu 3 (1,0 điểm) Một phòng họp có 320 ghế ngồi được xếp thành từng dãy và số ghế mỗi dãy đều bằng nhau. Nếu số dãy ghế tăng thêm 1 và số ghế mỗi dãy tăng thêm 2 thì trong phòng có 374 ghế. Hỏi trong phòng họp có bao nhiêu dãy ghế và mỗi dãy có bao nhiêu ghế ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
một phần ba là , ví dụ là một cái bánh chia cho ba phần bạn đã hiểu chưa ? nếu chưa hiểu thì bảo mình nhé
Gọi parabol có dạng y=ax2
Vì P đi qua A(-2;-2)\(\Rightarrow\)a=-\(\dfrac{1}{2}\)
\(\Rightarrow\)P có dạng y= -\(\dfrac{1}{2}\)x2 (1)
vì khoảng cách đến trục hoành gấp đôi khoảng cách đến trục tung\(\Rightarrow\)\(\left|y\right|\)=2\(\left|x\right|\)
Nếu x>0 thì y>0 (vô lí)
Nếu x<0 thì y<0\(\Rightarrow\)y=-2x (2)
Từ (1) và (2) có x=4 và y=-2
hoặc x=-4 và y= -2
vậy M(4;-2) hoặc(-4;-2)
Em nghĩ nên sửa đề thành Parabol đi qua điểm (3;3) thì bài toán mới giải được ạ
Parabol đi qua điểm (3;3) nên ta có:
\(3=\left(2m-1\right)\cdot3^2\Rightarrow2m-1=\frac{1}{3}\)
\(\Leftrightarrow2m=\frac{4}{3}\Rightarrow m=\frac{2}{3}\)
Khi đó ta được parabol \(y=\frac{x^2}{3}\)
Đường thẳng song song với trục hoành cắt trục tung tại điểm có tung độ là 4 => y = 4
Khi đó \(4=\frac{x^2}{3}\Rightarrow x^2=12\Rightarrow\orbr{\begin{cases}x=2\sqrt{3}\\x=-2\sqrt{3}\end{cases}}\)
G/s A nằm ở phía dương, B ở phía âm đối với trục hoành thì khi đó tọa độ của A và B là: \(\hept{\begin{cases}A\left(2\sqrt{3};4\right)\\B\left(-2\sqrt{3};4\right)\end{cases}}\)
\(\Rightarrow AB=\left|2\sqrt{3}\right|+\left|-2\sqrt{3}\right|=4\sqrt{3}\)
\(\Rightarrow S_{OAB}=\frac{4\sqrt{3}\cdot4}{2}=8\sqrt{3}\left(dvdt\right)\)
giả sử \(a\ge b\ge c>0\)
Ta có : \(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}=\frac{a\left(ab+ac-b^2-c^2\right)}{\left(b^2+c^2\right)\left(b+c\right)}=\frac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b^2+c^2\right)\left(b+c\right)}\)
TT: \(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}=\frac{bc\left(b-c\right)+ba\left(b-a\right)}{\left(c^2+a^2\right)\left(c+a\right)}\)
\(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}=\frac{ca\left(c-a\right)+cb\left(c-b\right)}{\left(a^2+b^2\right)\left(a+b\right)}\)
Do đó: \(\left(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\right)-\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
\(=ab\left(a-b\right)\left[\frac{1}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{1}{\left(c^2+a^2\right)\left(c+a\right)}\right]\)
\(+ca\left(a-c\right)\left[\frac{1}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{1}{\left(a^2+b^2\right)\left(a+b\right)}\right]\)
\(+bc\left(b-c\right)\left[\frac{1}{\left(c^2+a^2\right)\left(c+a\right)}-\frac{1}{\left(a^2+b^2\right)\left(a+b\right)}\right]\)
Vì \(a\ge b\ge c\) => gtri bt > 0
=> đpcm
Gọi thời gian dự định là x ( giờ) , vận tốc của xe lúc đầu là y ( km/h) ( x,y>0)
=> Chiều dài quãng đường AB là xy ( km)
Khi xe chạy nhanh hơn 10km mỗi giờ thì :
+) Vận tốc của xe lúc này là: y+10 (km/h)
+) Thời gian xe đi hết quãng đường AB là: x-3 ( giờ)
Ta có pt: ( x-3)(y+10)=xy (1)
Khi xe chạy chậm hơn 10km mỗi giờ thì:
+) Vận tốc của xe lúc này là: y-10 (km/h)
+) Thời gian xe đi hết quãng đường AB là: x+5 ( giờ)
Ta có pt: ( x+5)(y-10)=xy (2)
Từ (1) & (2) ta có hệ: \(\hept{\begin{cases}\left(x-3\right)\left(y+10\right)=xy\\\left(x+5\right)\left(y-10\right)=xy\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy+10x-3y-30=xy\\xy-10x+5y-50=xy\end{cases}\Leftrightarrow\hept{\begin{cases}10x-3y=30\\-10x+5y=50\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}10x-3y=30\\2y=80\end{cases}\Leftrightarrow\hept{\begin{cases}x=15\\y=40\end{cases}}}\)
Vậy thời gian xe dự định đi hết quãng đường AB là 15 giờ, vận tốc của xe lúc đầu là 40km/h.
Độ dài quãng đường AB là: 15.40=600(km)
Gọi số dãy là x, số ghế là y (x;y thuộc N*)
Vì tổng số ghế là 320 nên:
xy = 320
=> y = 320/x (1)
Nếu số dãy ghế tăng tăng thêm 1 và số ghế mỗi dãy tăng thêm 2 thì trong phòng có 374 ghế nên ta có:
(x+1) (y+2) - xy = 374 - 320
=> 2x + y + 2 + xy -xy = 54
=>2x + y = 52 (2)
Thay (1) vào (2) ta có:
2x + 320/x =52
<=> 2x2x2 +320 = 52x
<=> x2x2 + 160 = 26x
<=> x2x2 - 26x +160 =0
<=> x2x2 - 10x - 16x + 160 = 0
<=> (x-16) * (x-10) = 0
<=> x = 16 hoặc x=10
=> y= 320/16 = 20 hoặc y = 320/10 =32
Vậy
TH1: Phòng họp có 16 dãy, mỗi dãy 20 chỗ
TH2: Phòng họp có 10 dãy, mỗi dãy 32 chỗ
3 con giáp là con trâu