c) số b852a chia hết cho 3 và cho 4
d) số 35a7b chia hết cho 4 và 9
e) 4a75b chia hết cho 75
g) số 3a4b5 chia hết cho 9 và a-b=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số hạng:
39 - 11 + 1 = 29 (số)
Tổng là:
(39 + 11) . 29 : 2 = 725
Ta có : \(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\)
\(=\left(k^2+k\right)\left(k+2\right)-\left(k^2-k\right)\left(k+1\right)\)
\(=k^3+2k^2+k^2+2k-k^3+k\)
\(=3k^2+3k\)
\(=3k\left(k+1\right)\left(VP\right)\)
\(\Rightarrowđpcm\)
k(k+1)(k+2) -(k-1)k(k+1)
=k(k+1)(k + 2 - k + 1)
= 3k(k+1) đpcm
\(5.p.p.5.p^2.q.4.q=\left(5.5.4\right).\left(p.p.p^2\right).\left(q.q\right)=100p^4.q^2\)
(8 - 16)(\(x\) - 5) = 0
\(x\) - 5 = 0
\(x\) = 5
Câu 1: Số vừa là bội của 3 vừa là ước của 54 là?
Câu 2: Cho P là tập hợp các ước không nguyên tố của số 180. Số phần tử của tập hợp P là?
Câu 3: Ba số nguyên tố có tổng là 106. Trong các số hạng đó, số nguyên tố lớn nhất thỏa mãn có thể là…
Câu 4: Có bao nhiêu số chẵn có 4 chữ số
\(\left(8x-16\right)\left(x-5\right)=0\\ \Leftrightarrow8\left(x-2\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
(8\(x\) - 16).(\(x\) - 5) = 0
\(\left[{}\begin{matrix}8x-16=0\\x-5=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}8x=16\\x-5=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
Vậy \(x\) \(\in\){2; 5}
\(\dfrac{\dfrac{\dfrac{9}{9}}{\dfrac{9}{9}}}{\dfrac{\dfrac{9}{9}}{\dfrac{9}{9}}}\) + \(\dfrac{\dfrac{\dfrac{9}{9}}{\dfrac{9}{9}}}{\dfrac{\dfrac{9}{9}}{\dfrac{9}{9}}}\) = 1 + 1 = 2
\(2x-124=x+224\\ \Rightarrow2x+x=224+124\\ \Rightarrow3x=348\\ \Rightarrow x=348:3\\ \Rightarrow x=116\)
2\(x\) - 124 = \(x\) + 224
2\(x\) - \(x\) = 224 + 124
\(x\) = 348
\(\overline{ab}\) \(\times\) 101 = \(\overline{ab}\) \(\times\)(100 + 1) = \(\overline{ab00}\) + \(\overline{ab}\) = \(\overline{abab}\)
c, \(\overline{b852a}\) ⋮ 3; 4
\(\overline{b852a}\) ⋮ 4 ⇒ a = 4; 0
a = 4; \(\overline{b852a}\) ⋮ 3 ⇒ b + 8 + 5 + 2 + a ⋮ 3 ⇒ b + 15 + 4 ⋮ 3
⇒ b + 1 ⋮ 3 ⇒ b = 2; 5; 8
⇒ \(\overline{b852a}\) = 28524; 58524; 88524;
a = 0; \(\overline{b852a}\) ⋮ 3 ⇒ b + 8 + 5 + 2 + a ⋮ 3 ⇒ b + 15+ 0 ⋮ 3
⇒ b ⋮ 3 ⇒ b = 3; 6;9
⇒ \(\overline{b852a}\) = 38520; 68520; 98520
Vậy \(\overline{b852a}\) = 28524; 38520; 58524; 68520; 88524; 98520
d, \(\overline{35a7b}\) \(⋮\) 4 ; 9
\(\overline{35a7b}\) ⋮ 4 ⇒ b = 2; 6
b = 2; \(\overline{35a7b}\) ⋮ 9 ⇒ 3+5+a+7+b ⋮ 9 ⇒ a + 15+2 ⋮ 9 ⇒ a - 1 ⋮ 9
⇒ a = 1
⇒ \(\overline{35a7b}\) = 35172
b = 6; \(\overline{35a7b}\) ⋮ 9 ⇒ 3 + 5 + a + 7 + 6 ⋮ 9 ⇒ a + 3 ⋮ 9
⇒ a = 6
⇒ \(\overline{35a7b}\) = 35676
⇒ \(\overline{35ab7}\) = 35172; 35676