Cho biểu thức : A = (x – 2)2 – x2(x – 4) + 8
B = (x2 – 6x + 9):(x – 3) – x(x + 7) – 9
a) Thu gọn biểu thức A và B với x≠3
b) Tính giá trị của biểu thức A tại x = -1
c) Biết C = A + B. Chứng minh C luôn âm với mọi giá trị của x ≠ 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\hept{\begin{cases}a-23=m^2\\a+22=n^2\end{cases}}\left(m,n\inℕ\right)\)
Ta có : \(a+22>a-23\Rightarrow n^2>m^2\)
\(\Rightarrow n^2-m^2=a+22-\left(a-23\right)\)
\(\Rightarrow n^2-m^2=a+22-a+23\)
\(\Rightarrow\left(n-m\right)\left(n+m\right)=45\)
Từ đây ta lập bảng các ước dương của 45
n-m | 1 | 3 | 5 | 9 | 15 | 45 |
n+m | 45 | 15 | 9 | 5 | 3 | 1 |
n | 23 | 9 | 7 | 7 | 9 | 23 |
m | 22 | 6 | 2 | -2 | -6 | -22 |
Vì m, n ∈ N => \(\hept{\begin{cases}n\in\left\{23;9;7\right\}\\m\in\left\{22;6;2\right\}\end{cases}}\)=> \(\hept{\begin{cases}n^2\in\left\{529;81;49\right\}\\m^2\in\left\{484;36;4\right\}\end{cases}}\)
=> \(\hept{\begin{cases}a-23\in\left\{484;36;4\right\}\\a+22\in\left\{529;84;49\right\}\end{cases}}\Rightarrow a\in\left\{507;59;27\right\}\)
Chắc là có sai sót ;-;
Đề:............
<=> - (1 - 2018x) + 2019x.(1 - 2018x) = 0
<=> (1 - 2018x).[(-1) + 2019x] = 0
Xét 2 trường hợp, ta có:
TH1: 1 - 2018x = 0 TH2: -1 + 2019x = 0
<=> 2018x = 1 <=> 2019x = 1
<=> x = 1/2018 <=> x = 1/2019
Vậy x = 1/2018; 1/2019
Bài 1 :
\(49\left(x-2\right)^2-25\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[7\left(x-2\right)-5\left(2x+1\right)\right]\left[7\left(x-2\right)+5\left(2x+1\right)\right]=0\)
\(\Leftrightarrow\left(7x-14-10x-5\right)\left(7x-14+10x+5\right)=0\)
\(\Leftrightarrow\left(-3x-19\right)\left(17x-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-3x=19\\17x=9\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-19}{3}\\x=\frac{9}{17}\end{cases}}}\)
Bài 2 :
+) \(9x^2-6xy+y^2-21x+7y\)
\(=\left(3x-y\right)^2-7\left(3x-y\right)\)
\(=\left(3x-y\right)\left(3x-y-7\right)\)
+) \(x^2+2x-35\)
\(=x^2+2x+1-36\)
\(=\left(x+1-6\right)\left(x+1+6\right)\)
\(=\left(x-5\right)\left(x+7\right)\)
+) \(2x^2+9x-5\)
\(=2x^2-x+10x-5\)
\(=x\left(2x-1\right)+5\left(2x-1\right)\)
\(=\left(2x-1\right)\left(x+5\right)\)
+) \(6x^2+23x+15\)
\(=6x^2+18x+5x+15\)
\(=6x\left(x+3\right)+5\left(x+3\right)\)
\(=\left(x+3\right)\left(6x+5\right)\)