We use 8 digits 0, 1, 2, 3, 4, 5, 6, 7 to form all 5-digit natural numbers consisting of distinct digits. Find the sum of all numbers that can be formed
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{2020}{2021}=\frac{2020.2022}{2021.2022}=\frac{\left(2021-1\right)\left(2021+1\right)}{2021.2022}=\frac{2021^2-1}{2021.2022}\)
\(\frac{2021}{2022}=\frac{2021^2}{2021.2022}\)
Vì 20212 > 20212 - 1 nên \(\frac{2021^2-1}{2021.2022}< \frac{2021^2}{2021.2022}\)
Hay \(\frac{2020}{2021}< \frac{2021}{2022}\)
\(VT=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{1018081}=\)
\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1009^2}< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1008.1009}=\)
\(=\frac{1}{4}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{1009-1008}{1008.1009}=\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1008}-\frac{1}{1009}=\frac{3}{4}-\frac{1}{1009}< \frac{3}{4}\)
Ta có: 5x=2y⇒2x=5y5x=2y⇒2x=5y(1)
3y=5z⇒5y=3z3y=5z⇒5y=3z (2)
Từ (1) và (2) ,đặt: 2x=5y=3z=k⇒⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩x=2k=2288y=5k=5288z=3k=32882x=5y=3z=k⇒{x=2k=2288y=5k=5288z=3k=3288 (3)
Từ (1) và (2) theo tính chất tỉ dãy số bằng nhau ,ta có:
2x=5y=3z=2−5+3x−y+z=02882x=5y=3z=2−5+3x−y+z=0288(4)
Suy ra k = 288. Dựa và (3) ta có: ⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩x=2k=2288y=5k=5288z=3k=3288{x=2k=2288y=5k=5288z=3k=3288
Vậy .....
\(M=\left|x-2021\right|+\left|x-2020\right|=\left|2021-x\right|+\left|x-2020\right|\)
Ta có: \(\hept{\begin{cases}\left|2021-x\right|\ge2021-x\\\left|x-2020\right|\ge x-2020\end{cases}}\Rightarrow M\ge2021-x+x-2020=1\)
Dấu '' = '' xảy ra khi: \(\hept{\begin{cases}2021-x\ge0\\x-2020\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le2021\\x\ge2020\end{cases}}\Rightarrow2020\le x\le2021\)
nếu mà làm thì kết quả là 0 và 5 chứ ko có kết quả nào như trên bạn thử xem ko có kết quả nào đúng nhé