(Nam Định)
Cho phương trình x2 – 2x – m2 + 2m = 0 (1), với m là tham số.
1) Giải phương trình (1) khi m = 0.
2) Xác định m để phương trình (1) có hai nghiệm phân biệt x1, x2 thỏa mãn điều kiện \(x_1^2-x_2^2=10\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,
Trước tiên để pt có hai nghiệm phân biệt thì:
Áp dụng định lý Viete với $x_1,x_2$ là hai nghiệm của pt ta có:
Khi đó:
(thỏa mãn)
Vậy
a, m=-1
\(\Rightarrow x^2+4x+2+1=0\)
\(\Rightarrow x^2+x+3=0\)
\(\Rightarrow\Delta=1^2-4.1.3\)
\(=-11\)<0
\(\Rightarrow\) pt vô nghiệm
\(x^2+x+m-2=0\)
\(a,m=0\)
\(\Rightarrow x^2+x-2=0\)
\(\Rightarrow\hept{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy m=0 thì pt có 2 nghiệm x=1 và x=-2
a, Thay m = 0 vào phương trình trên ta được :
\(x^2+x-2=0\)
Ta có : \(\Delta=1+8=9\)
\(x_1=\frac{-1-3}{2}=-2;x_2=\frac{-1+3}{2}=1\)
Vậy m = 0 thì x = -2 ; x = 1
b, Theo Vi et \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-1\\x_1x_2=\frac{c}{a}=m-2\end{cases}}\)
mà \(\left(x_1+x_2\right)^2=1\Leftrightarrow x_1^2+x_2^2=1-2x_1x_2=2m-3\)
hay bất phương trình trên tương đương :
\(2m-3-3\left(m-2\right)< 1\)
\(\Leftrightarrow2m-3-3m+6< 1\Leftrightarrow-m+3< 1\)
\(\Leftrightarrow-m< -2\Leftrightarrow m>2\)
m=±27