Bài 1: Tìm hai số nguyên biết tích của chúng bằng hiệu của chúng
Bài 2: Cho a,b,c,d là các số nguyên thỏa mãn ab+cd chia hết cho a-c. C/M ad+bc cũng chia hết cho a-c
Bài 3: Tìm tát cả các số tự nhiên n sao cho \(3^{2n}+3^n+1\) chia hết cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có phaỉ
A = ax + ay + bx + by = (a+b).x + (a+b).y = (a+b)(x+y) = -2 . 17 = -34 ?
Hình như bạn này đang tìm tổng A đó Ngân, lười kiểm tra câu hỏi ak :V
X là số tự nhiên có 3 chữ số : x có dạng : abc
Y là số tự nhiên có 2 chữ số : y có dạng bc
Vì xóa chữ số hàng trăm của x ta được y nên :
abc = bc x 6
100a + bc = bc x 6
100a = bc x 5
100a = 50b + 5c
Chia đều cho 5
20a = 10b + c
Chia đều tiếp cho 10 ta được :
2a = b + c/10
c/10 hay c = 0
b = 2
và a = 1
Số x là 120 và y là 20
\(a,\frac{3}{27}+\frac{1}{4}-\frac{1}{9}=\frac{3}{27}+\frac{1}{4}-\frac{3}{27}=\frac{3}{27}-\frac{3}{27}+\frac{1}{4}=\frac{1}{4}\)
\(b,\frac{72}{25}\cdot\frac{75}{36}=\frac{72\cdot75}{25\cdot36}=\frac{2\cdot36\cdot25\cdot3}{25\cdot36}=\frac{2\cdot3}{1\cdot1}=6\)
\(c,\frac{36}{49}:\frac{48}{14}=\frac{36}{49}\cdot\frac{14}{48}=\frac{36\cdot14}{49\cdot48}=\frac{3\cdot12\cdot2\cdot7}{7\cdot7\cdot4\cdot12}=\frac{3\cdot2}{7\cdot4}=\frac{6}{28}=\frac{3}{14}\)
\(d,\frac{39}{23}:26=\frac{39}{23}\cdot\frac{1}{26}=\frac{39}{23\cdot26}=\frac{3\cdot13}{23\cdot2\cdot13}=\frac{3}{23\cdot2}=\frac{3}{46}\)
\(e,45:\frac{15}{2}=\frac{45}{1}\cdot\frac{2}{15}=\frac{45\cdot2}{15}=\frac{3\cdot15\cdot2}{15}=\frac{6}{1}=6\)
\(g,\frac{57}{8}:\frac{3}{4}-\frac{15}{7}\cdot\frac{14}{25}=\frac{57\cdot4}{8\cdot3}-\frac{15\cdot14}{7\cdot25}=\frac{3\cdot19\cdot4}{2\cdot4\cdot3}-\frac{3\cdot5\cdot2\cdot7}{7\cdot5\cdot5}\)
\(=\frac{19}{2}-\frac{3\cdot2}{5}=\frac{95}{10}-\frac{12}{10}=\frac{83}{10}\)
\(B=\frac{2^{13}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(=\frac{2^{13}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{\left(5^3.7\right)^3+5^9.\left(2.7\right)^3}\)
\(=\frac{2^{13}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)
\(=\frac{2^{12}.3^4\left(2.3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^3\left(1-7\right)}{5^9.7^3.\left(1+2^3\right)}\)
\(=\frac{2^{12}.3^4.5}{2^{12}.3^5.4}-\frac{5^{10}.7^3.\left(-6\right)}{5^9.7^3.9}\)
\(=\frac{5}{12}-\frac{-10}{3}=\frac{5}{12}+\frac{40}{12}=\frac{45}{12}=\frac{15}{4}=3\frac{3}{4}\)