Chứng minh rằng: \(7^{n+1}+16.7^n+6^{2n+1}⋮29\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) u, v là nghiệm phương trình:
X^2 - 15 X + 36 = 0
\(\Delta=15^2-4.36=81\)
=> \(\orbr{\begin{cases}X=\frac{-\left(-15\right)+\sqrt{81}}{2}=12\\X=\frac{-\left(-15\right)-\sqrt{81}}{2}=3\end{cases}}\)
Vậy (u; v) = ( 12; 3 ) hoặc (u; v ) = (3; 12)
b) và c ) tương tự
d) \(u^2+v^2=\left(u+v\right)^2-2uv=13\)
=> \(\left(u+v\right)^2=25\)
=> u + v = 5 hoặc u + v = - 25
Có 2 TH:
TH1: u + v = 5 và uv= 6
TH2: u + v = -5 và uv = 6
Làm tương tự như câu a.
Trừ vế theo vế ta có:
\(2x=\sqrt{2}\)<=> \(x=\frac{\sqrt{2}}{2}\)
Thế vào 1 trong 2 phương trình ta có: \(y=1-\frac{\sqrt{2}}{2}\)
Vậy hệ có nghiệm ( x; y ) = ( \(\frac{\sqrt{2}}{2};1-\frac{\sqrt{2}}{2}\))
gọi 3 đường trung tuyến đó là AD,BE,CF.
Vẽ D',E',F' là hình chiếu của M trên BC,AC,AB.
Ta có : \(\frac{A'M}{A'G}+\frac{B'M}{B'G}+\frac{C'M}{C'G}=\frac{MD'}{GD}+\frac{ME'}{GE}+\frac{MF'}{GF}\)
Đặt \(GD=GE=GF=\frac{h}{3}\)( h là chiều cao của tam giác )
\(\Rightarrow\frac{A'M}{A'G}+\frac{B'M}{B'G}+\frac{C'M}{C'G}=\frac{h}{\frac{h}{3}}=3\)
b) \(A=\sqrt{x}+1\)
Để A \(\in\)Z \(\Leftrightarrow\sqrt{x}+1\in Z\)\(\Leftrightarrow\sqrt{x}\in Z\)
\(\Leftrightarrow\sqrt{x}=a\left(a\in Z;a\ge0\right)\)\(\Leftrightarrow x=a^2\)
vậy x là bình phương 1 số tự nhiên thì A thuộc Z
sửa đề là GTNN ms làm đc nhé
gọi d = ƯCLN ( x,y ) thì x = ad ;y = bd ( a,b ) = 1
Ta có : \(A=\frac{\left(ad+bd\right)^4}{\left(ad\right)^3}=\frac{d^4\left(a^4+b^4\right)}{a^3d^3}=\frac{d\left(a^4+b^4\right)}{a^3}\)
vì ( a,b ) = 1 nên ( a,a+b ) = 1
\(\Rightarrow\left(a^3,\left(a+b\right)^4\right)=1\), suy ra d \(⋮\)a3
giả sử d = ca3 ( c \(\in Z^+\))
Khi đó : A = c ( a + b )4 với a,b,c \(\in Z^+\)
Do A là số lẻ nên c và a+b là số lẻ.
Để Amin ta chọn c = 1, a + b = 3 . Khi đó A = 81
Để a + b = 3 thì a = 2 ; b = 1 hoặc a = 1 ; b = 2
Vậy GTNN của A là 81 khi x = 16,y = 8 hoặc x = 1, y = 2
Xét x + y < 8 :
+) Nếu y = 0 thì \(A=1\)
+) Nếu \(1\le y\le6\)thì \(\frac{x}{x+y}< 1,\frac{y}{8-\left(x+y\right)}< 6\Rightarrow A< 7\)
+) Nếu y = 7 thì x = 0 ; A = 7
Xét x + y > 8
Ta có : \(\frac{y}{8-\left(x+y\right)}\le0,\frac{x}{x+y}\le1\)
\(\Rightarrow A\le1\)
Từ đó ta tìm được GTLN của A là 7 khi x = 0 ; y = 7
Từ giả thiếu suy ra: (x2+y2)2-4(x2+y2)+3=-x2 =<0
Do đó: A2-4A+3 =<0
<=> (A-1)(A-3) =<0
<=> 1 =<A=<3
Vậy MinA=1 <=> x=0; y=\(\pm\)1
MaxA=3 <=> x=0; y=\(\pm\sqrt{3}\)
\(7^{n+1}+16.7^n+6^{2n+1}⋮29\)(1)
Ta có: \(7^{n+1}+16.7^n+6^{2n+1}\)
\(=6.6^{2n}-6.7^n+29.7^n\)
\(=6\left(36^n-7^n\right)+29.7^n⋮29\)
Vì \(36^n-7^n⋮\left(36-7\right)\)
Vậy (1) đúng với mọi số tự nhiên n.