tớ cần gấp ;-;
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{x-2}=\frac{5}{4}\)
=> \(4\left(x+1\right)=5\left(x-2\right)\)
=> \(4x+4=5x-10\)
=> \(5x-4x=10+4\)
=> \(x=14\)
\(\frac{-1}{10}\)-\(\frac{2}{5}\)x+\(\frac{7}{20}\)=\(\frac{1}{10}\)
\(\frac{2}{5}\)x+\(\frac{7}{20}\)=\(\frac{-1}{10}\)-\(\frac{1}{10}\)
\(\frac{2}{5}\)x+\(\frac{7}{20}\)=\(\frac{-2}{10}\)
\(\frac{2}{5}\)x =\(\frac{-4}{20}\)-\(\frac{7}{20}\)
\(\frac{2}{5}\)x =\(\frac{-11}{20}\)
x =\(\frac{-11}{20}\).\(\frac{5}{2}\)
x =-1\(\frac{3}{8}\)
vậy...
-1/10-2/5x+7/20=1/10
2/5x+7/10=-1/10-1/10
2/5x+7/10=0
2/5x=0-7/10
2/5x=-3/10
x=-3/10:2/5
x=-3/4
\(\frac{8}{9}-\frac{1}{72}-\frac{1}{56}-...-\frac{1}{2}\)
\(=\frac{8}{9}-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{72}\right)\)
\(=\frac{8}{9}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}\right)\)
\(=\frac{8}{9}-\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{9-8}{8.9}\right)\)
\(=\frac{8}{9}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{8}{9}-\left(1-\frac{1}{9}\right)=\frac{8}{9}-\frac{8}{9}=0\)
3B=3/1.4+3/4.7+3/7.10+...+3/100.103
3B=(4-1)/1.4+(7-4)/4.7+(10-7)/7.10+...+(103-100)/100.103
3B=1-1/4+1/4-1/7+1/7-1/10+...+1/100-1/103=1-1/103=102/103
B=102/(3.103)=34/103
HT
\(\frac{1}{1.4}+\frac{1}{4.7}+.....+\frac{1}{100.103}\)
Đặt :
\(A=\frac{1}{1.4}+\frac{1}{4.7}+....+\frac{1}{100.103}\)
\(3A=\frac{3}{1.4}+\frac{3}{4.7}+.....+\frac{3}{100.103}\)
\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{100}-\frac{1}{103}\)
\(3A=1-\frac{1}{103}\)
\(3A=\frac{102}{103}\)
\(A=\frac{34}{103}\)
=\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{1999\cdot2000}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+...-\frac{1}{999}+\frac{1}{999}-\frac{1}{2000}\)
=\(\frac{1}{1}-\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{999}+\frac{1}{999}\right)-\frac{1}{2000}\)
=\(\frac{1}{1}+0+0+...+0-\frac{1}{2000}\)
=\(\frac{1}{1}-\frac{1}{2000}\)
=\(\frac{2000}{2000}-\frac{1}{2000}\)
=\(\frac{1999}{2000}\)