Cho x, y, z>0, x+y+z=3. Tìm giln của A=\(\sqrt[3]{2x+y}+\sqrt[3]{2y+z}+\sqrt[3]{2z+x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(B=\frac{x^2+1}{x^2-x+1}\)
\(\Leftrightarrow B=\frac{3x^2+3}{3.\left(x^2-x+1\right)}\)
\(\Leftrightarrow B=\frac{x^2+2x+1+2.\left(x^2-x+1\right)}{3.\left(x^2-x+1\right)}\)
\(\Leftrightarrow B=\frac{\left(x+1\right)^2}{3.\left(x^2-x+1\right)}+\frac{2}{3}\)
Vì \(\frac{\left(x+1\right)^2}{3\left(x^2-x+1\right)}\ge0\forall x\)( Điều này các bạn tự CM nhé )
\(\Rightarrow\)\(B\ge\frac{2}{3}\)\(\Rightarrow\)\(B_{min}=\frac{2}{3}\)
Dấu "=" Xảy ra khi: \(x+1=0\)\(\Leftrightarrow\)\(x=-1\)
Vậy \(B_{min}=\frac{2}{3}\)\(\Leftrightarrow\)\(x=-1\)
\(E=\frac{x-1}{x}:\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]\)
\(=\frac{x-1}{x}:\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-\frac{3x\left(x+1\right)}{3x}\right)\right]\)
\(=\frac{x-1}{x}:\left[\frac{2}{3x}-\frac{2}{x+1}.\frac{\left(x+1\right)\left(1-3x\right)}{3x}\right]\)
\(=\frac{x-1}{x}:\left[\frac{2}{3x}-\frac{2\left(x+1\right)\left(1-3x\right)}{3x\left(x+1\right)}\right]=\frac{x-1}{x}:\left[\frac{2}{3x}-\frac{2\left(1-3x\right)}{3x}\right]\)
\(=\frac{x-1}{x}:2=\frac{x-1}{2x}\)hay \(E=\frac{x-1}{2x}\)
mình làm ví dụ một câu thôi nhé !
\(\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-1}\right)=\frac{4x}{\left(x+1\right)^2}\)
\(\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{x-1}{\left(x+1\right)\left(x-1\right)}+\frac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{2}{\left(x-1\right)\left(x+1\right)}\right)=VP\)
\(\frac{4x}{\left(x-1\right)\left(x+1\right)}:\frac{x-1+x^2+x+2}{\left(x+1\right)\left(x-1\right)}=\frac{4x}{\left(x+1\right)^2}\)
\(\frac{4x}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)^2}=\frac{4x}{\left(x+1\right)^2}\)
<=> 4x( x + 1 )^2 = 4x ( x + 1 )^2
<=> 4x ( x^2 + 2x + 1 ) = 4x ( x^2 + 2x + 1 )
<=> 4x^3 + 8x^2 + 4x - 4x^3 - 8x^2 - 4x = 0
<=> 0 = 0 ( Vậy ta có đpcm )
Ta có: \(\left(x^2+1\right)^2+3x.\left(x^2+1\right)+2x^2=0\)
\(\Leftrightarrow\left(x^2+1\right)^2+x.\left(x^2+1\right)+2x.\left(x^2+1\right)+2x^2=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+2x+1\right)+x.\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x+1\right)^2=0\)
Vì \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)mà \(\left(x^2+x+1\right)\left(x+1\right)^2=0\)
\(\Rightarrow\left(x+1\right)^2=0\)\(\Leftrightarrow\)\(x=-1\)
Vậy \(x=-1\)
Ta có: \(\left(2x+7\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow4x^2+28x+49=x^2+6x+9\)
\(\Leftrightarrow3x^2+22x+40=0\)
\(\Leftrightarrow3\left(x^2+\frac{22}{3}x+\frac{40}{3}\right)=0\)
\(\Leftrightarrow3\left(x^2+2.x.\frac{11}{3}+\frac{121}{9}-\frac{1}{9}\right)=0\)
\(\Leftrightarrow\left(x+\frac{11}{3}\right)^2-\frac{1}{9}=0\)
\(\Leftrightarrow\left(x+\frac{11}{3}\right)^2=\frac{1}{9}\)
\(\Leftrightarrow x+\frac{11}{3}=\pm\frac{1}{3}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{11}{3}=\frac{1}{3}\\x+\frac{11}{3}=-\frac{1}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{10}{3}\\x=-4\end{cases}}\)
Vậy \(x=-\frac{10}{3}\)hoặc \(x=-4\)
\(\left(2x+7\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow4x^2+28x+49=x^2+6x+9\)
\(\Leftrightarrow3x^2+22x+40=0\)giải delta ta có :
\(x_1=-\frac{10}{3};x_2=-4\)
ĐK : n ∈ Z
n3 + 3n2 - 4n
= n3 + 3n2 + 2n - 6n
= n( n2 + 3n + 2 ) - 6n
= n( n2 + n + 2n + 2 ) - 6n
= n[ n( n + 1 ) + 2( n + 1 ) ] - 6n
= n( n + 1 )( n + 2 ) - 6n
Dễ dàng chứng minh n( n + 1 )( n + 2 ) ⋮ 6 và 6n ⋮ 6
=> n( n + 1 )( n + 2 ) - 6n ⋮ 6
hay n3 + 3n2 - 4n ⋮ 6 ( đpcm )
ĐK : n ∈ Z
n3 + 3n2 - 4n
= n3 + 3n2 + 2n - 6n
= n( n2 + 3n + 2 ) - 6n
= n( n2 + n + 2n + 2 ) - 6n
= n[ n( n + 1 ) + 2( n + 1 ) ] - 6n
= n( n + 1 )( n + 2 ) - 6n
Dễ dàng chứng minh n( n + 1 )( n + 2 ) ⋮ 6 và 6n ⋮ 6
=> n( n + 1 )( n + 2 ) - 6n ⋮ 6
hay n3 + 3n2 - 4n ⋮ 6 ( đpcm )
ta có
\(\left(7x-2x\right)\left(2x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow5x.\left(2x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x=0\\2x-1=0\end{cases}}\) hoặc \(x+3=0\)
hay ta có \(x\in\left\{0;\frac{1}{2};-3\right\}\)