Tìm số dư khi chia D cho 13 biết: \(D=3^1+3^2+...+3^{2011}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì 9n \(⋮\)n và 18 \(⋮\)9 => 9n + 18 \(⋮\)9 (đpcm)
b) Vì 15n \(⋮\)5 và 6 không chia hết cho 5
=> 15n + 6 không chia hết cho 5 (đpcm)
Dấu không chia hết của olm bị sai nha bạn.
\(A=1+3+3^2+........+3^{99}\)
\(=\left(1+3\right)+3^2\left(1+3\right)+........+3^{98}\left(1+3\right)\)
\(=4+4.3^2+.........+4.3^{98}\)
\(=4\left(1+3^2+.....+3^{98}\right)\) . Suy ra A chia hết cho 4.
\(A=1+3+3^2+.......+3^{99}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+.......+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(=40+3^4\left(1+3+3^2+3^3\right)+........+3^{96}\left(1+3+3^2+3^3\right)\)
\(=40+40.3^4+.......+3^{96}.40\)
\(=40\left(1+3^4+......+3^{96}\right)\).
Suy ra A chia hết cho 40.
B1; {1} ; B2 {2} ; B3 {3} ; B4 {1;2} ; B5 {1;3} ; B6 {2;3} ; B7 {1;2;3} ; B8 là tập hợp rỗng nha
Theo giả thiết ta vẽ được hình:
Khi đó AN = AM + MN và AB = AN + NB.
Suy ra AB = (AM + MN) + NB
Do AM = NB = 2 cm nên 10 = 2 + MN + 2.
Từ đó tính được MN = 10 - 4 = 6 (cm )
Ta có: \(A=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+....+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)
Xét tử : \(2008+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(=\left(1+1+...+1\right)+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)( có 2008 số hạng 1 )
\(=\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{2}{2007}\right)+\left(1+\frac{1}{2008}\right)+1\)
\(=\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}\)
\(=2009\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)
Ghép tử và mẫu....
Vậy A = 2009
Ta có \(D=3+3^2+3^3+...+3^{2011}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)+3^{2011}\)
\(=3\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)+3^{2011}\)
\(=3.13+...+3^{2008}.13+3^{2011}\)
\(=13\left(3+3^2+...+3^{2008}\right)+3^{2011}\)
Vậy số dư của D khi chia cho 13 bằng số dư của 22011 khi chia cho 13
Ta có \(3^{2011}=3.3^{2010}=3.\left(3^3\right)^{670}\)
Ta có \(3^3\equiv1\left(mod13\right)\Rightarrow3^{2010}\equiv1\left(mod13\right)\)
\(\Rightarrow3^{2011}\equiv3\left(mod13\right)\)
Vậy \(D\equiv3\left(mod13\right)\)