giải phương trình
\(\frac{x+y}{x-y}>0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét \(a\le b\le c\) :
\(P=\frac{1}{4}.2\left(b-a\right).2\left(c-b\right).\left(c-a\right)\le\frac{\left(c-a\right)^3}{4}\le\frac{c^3}{4}\le\frac{1}{4}\)
với trường hợp còn lại \(a\ge b\ge c\) dễ thấy \(P\le0\) maxP không lớn hơn trường hợp trên, ta chọn \(P\le\frac{1}{4}\)
dấu "=" xảy ra khi \(a=0;b=\frac{1}{2};c=1\) và các hoán vị
Đặt \(a=3x^2+xy+2y^2=>0\le a\le2\)
xét 2 TH
+) Nếu a=0 thì x=y=0 nên P =0
+) nếu \(a\ne0\)thì x hoặc y phải khác 0
xét biểu thức
\(\frac{P}{a}=\frac{x^2+3xy-y^2}{3x^2+xy+2y^2}\)
nếu y=0 thì \(x\ne0=>\frac{P}{a}=\frac{1}{3}< P=\frac{a}{3}\le\frac{2}{3}\)
-xét TH y khác 0 , khi đó đặt \(t=\frac{x}{y}\), ta có
\(\frac{P}{a}=\frac{x^2+3xy-y^2}{3x^2+xy+2y^2}=\frac{t^2+3t-1}{3t^2+t+2}\)
gọi m là một giá trị \(\frac{P}{a}\), khi đó PT sau có nghiệm
\(m=\frac{t^2+3t-1}{3t^2+t+2}\)
\(=>\left(3m-1\right)t^2+\left(m-3\right)t+2m+1=0\left(1\right)\)
nếu \(m=\frac{1}{3}\left(thì\right)t=\frac{5}{8}.Nếu\left(m\ne\frac{1}{3}\right)thì\left(1\right)\)là PT bậc 2 có nghiệm khi zà chỉ khi
\(\left(m-3\right)^2-4\left(3m-1\right)\left(2m+1\right)\ge0\)
\(\Leftrightarrow23m^2+10m-13\le0\Leftrightarrow m\le\frac{13}{23}=>-1\le\frac{P}{a}\le\frac{26}{23}\)
mà a>0 nên \(-2\le-a\le P\le\frac{13}{23}a\le\frac{26}{23}\)
kết hợp những TH zừa xét lại ta có
\(-2\le P\le\frac{26}{23}\)
làm tiếp nè , mình phải làm tách ra không sợ nó lag
\(P=-2\)khi zà chỉ khi
\(\hept{\begin{cases}\frac{x}{y}=\frac{3-m}{2\left(3m-1\right)}=-\frac{1}{2}\\3x^2+xy+2y^2=2\end{cases}\Leftrightarrow\hept{\begin{cases}y=-2x\\3x^2-2x^2+8x^2=2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-2x\\x=\pm\frac{\sqrt{2}}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm\frac{\sqrt{2}}{3}\\y=\mp\frac{2\sqrt{2}}{3}\end{cases}}}\)
zậy MinP=-2 khi ....
+) MaxP nhé
\(P=\frac{26}{13}\)khi
\(\hept{\begin{cases}\frac{x}{y}=\frac{3-m}{2\left(3m-1\right)}=\frac{7}{4}\\3x^2+xy+2y^2=2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{7}{4}y\\3\left(\frac{7}{4}y\right)+\frac{7}{4}y^2+2y^2=2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{7}{4}y\\y=\pm\frac{4}{3}\sqrt{\frac{2}{23}}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm\frac{7}{3}\sqrt{\frac{2}{23}}\\y=\pm\frac{4}{3}\sqrt{\frac{2}{23}}\end{cases}}}\)
zậy ....
Nếu \(b>a+c\)tương đương với \(b^2>a^2+2ac+c^2\)
Trừ cả 2 vế cho 4ac ta được : \(b^2-4ac>a^2-2ac+c^2=\left(a-c\right)^2\)
Hay \(\Delta>\left(a-c\right)^2\ge0\)
Vậy ta có điều phải chứng mình
\(a^4+b^4+a^4+a^4\ge4\sqrt[4]{a^{12}b^4}=4a^3b\)
\(a^4+b^4+b^4+b^4\ge4\sqrt[4]{a^4b^{12}}=4ab^3\)
\(\Rightarrow4\left(a^4+b^4\right)\ge4\left(a^3b+ab^3\right)\Rightarrow a^4+b^4\ge a^3b+ab^3\)
\(F=\Sigma\frac{ab}{a^4+b^4+ab}\le\Sigma\frac{ab}{a^3b+ab^3+ab}=\Sigma\frac{1}{a^2+b^2+1}=\Sigma\frac{2}{2a^2+2b^2+2}\)
\(\le\Sigma\frac{1}{ab+a+b}\)
Đến đây bí :(
\(\frac{x+y}{x-y}>0\)
Ta xét 2 TH sau:
*) TH1: x+y; x-y cùng âm
\(\hept{\begin{cases}x+y< 0\\x-y< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -y\\x< y\end{cases}\Leftrightarrow}x< -y}\)
*) TH2: x+y; x-y cùng dương
\(\hept{\begin{cases}x+y>0\\x-y>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-y\\x>y\end{cases}\Leftrightarrow}x>y}\)