Tớ cần giải câu c)
Cám ơn các bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lời giải tại đây:
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-can-tai-aduong-cao-ahve-he-vuong-goc-voi-ab-tai-egoi-ck-la-duong-cao-cua-tam-giac-abcchung-minh1-phan-ck21-phan-cb2-1-phan.8561726987074
a)
b) Phương trình hoành độ giao điểm của hai đường thẳng đã cho:
-3x + 5 = 2x
⇔ 2x + 3x = 5
⇔ 5x = 5
⇔ x = 1 ⇒ y = 2.1 = 2
Vậy M(1; 2)
\(\Leftrightarrow x^2-4x+3>0\left(x\ne\pm5\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>3\end{matrix}\right.\)
Lời giải:
ĐK: $25-x^2>0\Leftrightarrow -5< x< 5$
$\frac{x^2-4x+3}{\sqrt{25-x^2}}>0$
$\Leftrightarrow x^2-4x+3>0$ (do $\sqrt{25-x^2}>0$)
$\Leftrightarrow (x-1)(x-3)>0$
$\Leftrightarrow x>3$ hoặc $x<1$
Kết hợp với đkxđ suy ra $3< x< 5$ hoặc $-5< x< 1$
a.Ta có:
ˆAKC=ˆAHB=90o,ˆKAC=ˆBAH���^=���^=90�,���^=���^
→ΔAKC∼ΔAHB(g.g)→Δ���∼Δ���(�.�)
→AKAH=ACAB→����=����
→AKAC=AHAB→����=����
Mà ˆKAH=ˆBAC���^=���^
→ΔAKH∼ΔACB(c.g.c)→Δ���∼Δ���(�.�.�)
→KHBC=AKAC=cosˆKAC=cosA→����=����=cos���^=cos�
→HK=BC.cosA→��=��.cos�
a) Ta có \(\widehat{CEB}=\widehat{CAB}=90^o\) nên 4 điểm A, B, C, E cùng thuộc đường tròn đường kính BC.
b) Kẻ \(FP\perp BC\) tại P. Ta thấy D là trực tâm tam giác FBC nên \(P\in DF\). Dễ thấy \(\Delta CDP~\Delta CBA\left(g.g\right)\) \(\Rightarrow\dfrac{CD}{CB}=\dfrac{CP}{CA}\) \(\Rightarrow CD.CA=CB.CP\)
CMTT, ta có \(BD.BE=BC.BP\)
Do đó \(CD.CA+BD.BE=CB.CP+BC.BP\) \(=BC\left(CP+BP\right)\) \(=BC^2\). Vậy đẳng thức được chứng minh.
a) Tam giác ABM vuông tại A có đường cao AC nên \(BC.BM=BA^2\). CMTT, \(BD.BN=BA^2\) nên \(BC.BM=BD.BN\Leftrightarrow\dfrac{BM}{BD}=\dfrac{BN}{BC}\). Từ đây dễ dàng suy ra \(\Delta BNM~\Delta BCD\left(c.g.c\right)\) (đpcm)
b) Ta có OQ//BN, OP//BM, mà \(MB\perp NB\) nên suy ra \(OP\perp BN\), từ đó O là trực tâm tam giác BPN.\(\Rightarrow ON\perp BP\)
Lại có \(QH\perp BP\) nên QH//ON.
Tam giác AON có Q là trung điểm AN, QH//ON nên H là trung điểm OA \(\Rightarrow AH=\dfrac{OA}{2}=\dfrac{R}{2}\) không đổi.