\(x^2\)-25-\(4xy\)\(+4y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2,6:0,2+1,5\times2\right):2-7\dfrac{1}{2}:\dfrac{3}{2}\)
\(=\dfrac{\left(13+3\right)}{2}-\dfrac{15}{2}\times\dfrac{2}{3}\)
\(=\dfrac{16}{2}-\dfrac{15}{3}=8-5=3\)
a)(2,6:0,2+1,5x2):2-7
=(13+3):2-7
=16:2-7
=8-7
=1
b)1/2:3/2
=1/2x2/3
=1/3
Gọi vận tốc ban đầu là x(km/h)
(Điều kiện: x>0)
Thời gian dự kiến sẽ đi hết quãng đường là: \(\dfrac{50}{x}\left(giờ\right)\)
Độ dài quãng đường đi được trong 2 giờ đầu là 2x(km)
Độ dài quãng đường còn lại là 50-2x(km)
Thời gian đi hết quãng đường còn lại là: \(\dfrac{50-2x}{x+2}\left(giờ\right)\)
Vì người đó đến B đúng dự định nên ta có:
\(2+0,5+\dfrac{50-2x}{x+2}=\dfrac{50}{x}\)
=>\(\dfrac{50}{x}-\dfrac{50-2x}{x+2}=\dfrac{5}{2}\)
=>\(\dfrac{50\left(x+2\right)-x\left(50-2x\right)}{x\left(x+2\right)}=\dfrac{5}{2}\)
=>\(\dfrac{50x+100-50x+2x^2}{x\left(x+2\right)}=\dfrac{5}{2}\)
=>\(\dfrac{2x^2+100}{x^2+2x}=\dfrac{5}{2}\)
=>\(5\left(x^2+2x\right)=2\left(2x^2+100\right)\)
=>\(5x^2+10x-4x^2-200=0\)
=>\(x^2+10x-200=0\)
=>(x+20)(x-10)=0
=>\(\left[{}\begin{matrix}x=-20\left(loại\right)\\x=10\left(nhận\right)\end{matrix}\right.\)
Vậy: Vận tốc ban đầu là 10km/h
\(\left|x-1\right|>=0\forall x;\left(x+y-2\right)^{2024}>=0\forall x,y\)
Do đó: \(\left|x-1\right|+\left(x+y-2\right)^{2024}>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\x+y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-x+2=-1+2=1\end{matrix}\right.\)
Thay x=1;y=1 vào Q, ta được:
\(Q=1^{2024}+1^{2024}=1+1=2\)
\(\left|x-1\right|+\left(x+y-2\right)^{2024}=0\)
Do \(\left|x-1\right|\ge0;\left(x+y-2\right)^{2024}\ge0,\forall x;y\in R\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\x+y-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(Q=x^{2024}+y^{2024}=1^{2024}+1^{2024}=2\)
\(x^5-2x^4+x^3\)
\(=x^3\cdot x^2-x^3\cdot2x+x^3\cdot1\)
\(=x^3\left(x^2-2x+1\right)=x^3\left(x-1\right)^2\)
\(2^2=2\cdot2=4\)
\(3^2=3\cdot3=9\)
\(4^2=4\cdot4=16\)
\(5^2=5\cdot5=25\)
\(6^2=6\cdot6=36\)
\(7^2=7\cdot7=49\)
\(8^2=8\cdot8=64\)
\(9^2=9\cdot9=81\)
\(10^2=10\cdot10=100\)
\(11^2=11\cdot11=121\)
\(12^2=12\cdot12=144\)
\(2x^5-50x^3=0\)
=>\(2x^3\left(x^2-25\right)=0\)
=>\(x^3\left(x-5\right)\left(x+5\right)=0\)
=>\(\left[{}\begin{matrix}x^3=0\\x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
Bổ sung kết luận:
Vậy \(x\) \(\in\) {-5; 0; 5}
Độ dài thật của quãng đường là:
4x300000=1200000(mm)=1,2(km)
Độ dài thật của quãng đường là:
4x300000=1200000(mm)=1,2(km)
cho mình một đúng nha bạn ❤
Bài 1:
a: \(\dfrac{2}{3}-\dfrac{7}{6}+\dfrac{5}{2}=\dfrac{4}{6}-\dfrac{7}{6}+\dfrac{15}{6}=\dfrac{12}{6}=2\)
b: \(9-2023^0+\sqrt{\dfrac{1}{25}}=9-1+\dfrac{1}{5}=8+\dfrac{1}{5}=8,2\)
c: \(\dfrac{4^{1010}\cdot9^{1010}}{3^{2019}\cdot16^{504}}=\dfrac{4^{1010}}{4^{1008}}\cdot\dfrac{3^{2020}}{3^{2019}}=\dfrac{3}{4^8}\)
Bài 3:
Tổng số tiền phải trả cho 1 bánh cỡ to, 2 bánh cỡ vừa, 1 bánh cỡ nhỏ là:
\(300000+250000\cdot2+200000=1000000\left(đồng\right)\)
=>bác Lan đủ tiền mua
Bài 2:
a: \(x-0,5=\dfrac{5}{6}\)
=>\(x=\dfrac{5}{6}+\dfrac{1}{2}=\dfrac{5}{6}+\dfrac{3}{6}=\dfrac{8}{6}=\dfrac{4}{3}\)
b: \(\left|x-1\right|+\dfrac{1}{2}=\dfrac{3}{2}\)
=>\(\left|x-1\right|=\dfrac{3}{2}-\dfrac{1}{2}=\dfrac{2}{2}=1\)
=>\(\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
Giải:
20 phút = \(\dfrac{1}{3}\) giờ
Hai vòi cùng chảy thì mỗi giờ chảy được:
1 : 3 = \(\dfrac{1}{3}\) (bể)
Trong 4 giờ vòi B chảy được:
1 - \(\dfrac{1}{3}\) x \(\dfrac{1}{3}\) = \(\dfrac{8}{9}\) (bể)
Trong 1 giờ vòi B chảy được:
\(\dfrac{8}{9}\) : 4 = \(\dfrac{2}{9}\) (bể)
Trong 1 giờ vòi A chảy được:
\(\dfrac{1}{3}\) - \(\dfrac{2}{9}\) = \(\dfrac{1}{9}\) (bể)
Một mình vòi A chảy đầy bể sau:
1 : \(\dfrac{1}{9}\) = 9(giờ)
Một mình vòi B chảy đầy bể sau:
1 : \(\dfrac{2}{9}\) = 4,5 (giờ)
Đáp số: . ..
(\(x^2\) - 4\(xy\) + 4y2) - 25
= (\(x\) - 2y)2 - 25
= (\(x-2y\) - 5)(\(x-2y\) + 5)