Rút gọn
\(B=\frac{2}{x^2-y^2}\sqrt{\frac{9\left(x^2+2xy+y^2\right)}{4}}\) với x > -y
\(C=\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}\) với a >hoặc= 0
\(\frac{1}{a-b}\sqrt{a^4\left(a-b\right)^2}\) với a > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cộng 2 phương trình lại
VT có:\(\sqrt{x}+\sqrt{32-x}\le8;\sqrt[4]{x}+\sqrt[4]{32-x}\le4\) nên VT\(\le\)12
VP có:\(y^2-6y+21=\left(y-3\right)^2+12\ge12\)
Nghiệm \(x=16;y=3\)
điều kiện: 0=<x =< 32
hệ đã cho tương đương với: \(\hept{\begin{cases}\left(\sqrt{x}+\sqrt{32-x}\right)+\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)=y^2-6y+21\\\sqrt{x}+\sqrt[4]{32-x}=y^2-3\end{cases}}\)
theo bất đẳng thức Bunhiacopsky ta có:
\(\left(\sqrt{x}+\sqrt{32-x}\right)^2\le\left(1^2+1^2\right)\left(x+32-x\right)=64\)
\(\Rightarrow\sqrt{x}+\sqrt{32-x}\le8\)
\(\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)^4\le\left[2\left(\sqrt{x}+\sqrt{32-x}\right)\right]^2\le256\Rightarrow\sqrt[4]{x}+\sqrt[4]{32-x}\le4\)
\(\Rightarrow\left(\sqrt{x}+\sqrt{32-x}\right)+\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)\le12\)
mặt khác \(y^2-6y+21=\left(y-3\right)^2+12\ge12\)
đẳng thức xảy ra khi x=16 và y=3 (tm)
Ta có :\(\sqrt{17}+\sqrt{26}>\sqrt{16}+\sqrt{25}=4+5=9\)
=> \(\sqrt{17}+\sqrt{26}>9\)
UWMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM...
a) PTHH : theo mình bài này có 2 PT á (: bạn tự viết nhé
b) \(n_{Fe}=\frac{12,1}{56}=0,2\left(mol\right)\)
Khi ngâm m gam vào dung dịch Ag( NO )3 thì chỉ có Fe phản ứng :
\(Fe+Ag\left(+2\right)->Fe\left(+2\right)+Ag\)
a a a a
Đến đoạn nãy chưa nghĩ ra == tự làm tiếp nhé
\(B=\frac{2}{x^2-y^2}\cdot\sqrt{\frac{9\left(x^2+2xy+y^2\right)}{4}}=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\sqrt{\frac{9\left(x+y\right)^2}{4}}\)
\(=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\frac{\sqrt{9\left(x+y\right)^2}}{\sqrt{4}}=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\frac{3\left(x+y\right)}{2}\)(vì x > -y <=> x + y > 0)
\(=\frac{3}{x-y}\)
\(C=\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}=\sqrt{\frac{2a}{3}\cdot\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\frac{a}{2}\)(vì a > = 0)
\(D=\frac{1}{a-b}\cdot\sqrt{a^4\left(a-b\right)^2}=\frac{1}{a-b}\cdot a^2\left(a-b\right)=a^2\)(a > b > 0)
câu cuối điều kiện là a>b
\(\frac{1}{a-b}\sqrt{a^4\left(a-b\right)^2}=\frac{a^2\left|a-b\right|}{a-b}=\frac{a^2\left(a-b\right)}{a-b}=a^2\) (vì a>b)