K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2020

con cacacacacacacacacacacacacacacacacacca

@@22@22@22@@222@@2@@2@@@2@2

6 tháng 8 2020

bạn kiểm tra lại đề bài cấu (c)

6 tháng 8 2020

\(\sqrt{4x^2-4x+1}=\sqrt{x^2+10x+25}\left(x\ge\frac{1}{2}\right)\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x+5\right)^2}\)

\(\Leftrightarrow2x-1=x+5\)

\(\Leftrightarrow2x-1-x-5=0\)

\(\Leftrightarrow x-6=0\Leftrightarrow x=6\left(tm\right)\)

vậy x=6 là nghiệm của phương trình

b) \(\sqrt{x+3}+2\sqrt{4x+12}-\frac{1}{3}\sqrt{9x+27}=8\left(x\ge-3\right)\)

\(\Leftrightarrow\sqrt{x+3}+2\sqrt{4\left(x+3\right)}-\frac{1}{3}\sqrt{9\left(x+3\right)}=8\)

\(\Leftrightarrow\sqrt{x+3}+4\sqrt{x+3}-\sqrt{x+3}=8\)

\(\Leftrightarrow4\sqrt{x+3}=8\)

\(\Leftrightarrow x+3=4\)

<=> x=-1 (tmđk)

vậy x=-1 là nghiệm của phương trình

6 tháng 8 2020

Ta giải như sau:

\(A=\sqrt{1+2\sqrt{6}+6}-\sqrt{1-2\sqrt{6}+6}\)

\(=\sqrt{\left(1+\sqrt{6}\right)^2}-\sqrt{\left(1-\sqrt{6}\right)^2}\)

\(=1+\sqrt{6}+1-\sqrt{6}\)

\(=2\)

\(B^2=2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}=2+B\)

\(\Leftrightarrow B^2-B-2=0\)

\(\Leftrightarrow\left(B+1\right)\left(B-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}B=-1\\B=2\end{cases}}\)Ta lấy B=2 vì B>0

\(C=\sqrt{2\sqrt{2\sqrt{2...}}}\)

\(\Rightarrow C^2=2\sqrt{2\sqrt{2\sqrt{2...}}}=2C\)

\(\Leftrightarrow C^2-2C=0\)

\(\Leftrightarrow C\left(C-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}C=0\\C=2\end{cases}}\)Ta lấy C=2 vì C>0

Ok r bn nhó ^^

6 tháng 8 2020

\(\frac{4}{\sqrt{3}+1}-\frac{5}{\sqrt{3}-2}+\frac{6}{\sqrt{3}-3}\)

\(=\frac{4\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}-\frac{5\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}+\frac{6\left(\sqrt{3}+3\right)}{\left(\sqrt{3}+3\right)\left(\sqrt{3}-3\right)}\)

\(=\frac{4\sqrt{3}-4}{2}-\frac{5\sqrt{3}+10}{-1}+\frac{6\sqrt{3}+18}{3-9}\)

\(=2\sqrt{3}-2+5\sqrt{3}+10-\sqrt{3}-3\)

\(=6\sqrt{3}+5\)

6 tháng 8 2020

Cay, đánh xong rồi tự nhiên bấm hủy :v

Ta có:\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a;b;c\right)\Rightarrow ab+bc+ca=1\)

Khi đó:

\(A=\frac{a^2\left(1+2b\right)}{b}+\frac{b^2\left(1+2c\right)}{c}+\frac{c^2\left(1+2a\right)}{a}\)

\(=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+2\left(a^2+b^2+c^2\right)\)

\(\ge\frac{\left(a+b+c\right)^2}{a+b+c}+2\cdot\frac{\left(a+b+c\right)^2}{3}\)

\(=a+b+c+\frac{2\left(a+b+c\right)^2}{3}\)

\(\ge\sqrt{3\left(ab+bc+ca\right)}+\frac{6\left(ab+bc+ca\right)}{3}\)

\(=2+\sqrt{3}\)

Đẳng thức xảy ra tại \(x=y=z=\sqrt{3}\)

6 tháng 8 2020

zZz Cool Kid_new zZz. Sai đề rồi bạn êii !

Nếu bạn đặt như vậy thì 

\(A=\frac{y-2}{x^2}+\frac{z-2}{y^2}+\frac{x-2}{z^2}\)

\(=\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\)

\(=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-2.\left(a^2+b^2+c^2\right)\)

6 tháng 8 2020

câu 14 nào ? 

5 tháng 8 2020

Uầy cái này là bổ đề huyền thoại của lớp 9 rồi :333333333

BĐT cần CM <=> \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)

<=> \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b\right)\left(b+c\right)\left(c+a\right)+8abc\)

<=> \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Mà theo CAUCHY 2 số thì \(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)

Nhân lại => \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

=> Ta có điều phải chứng minh.

5 tháng 8 2020

Áp dụng BĐT AM-GM với 3 số a, b, c ta luôn có:

\(a+b\ge2\sqrt{ab}\), dấu bằng xảy ra khi a = b.

\(b+c\ge2\sqrt{bc}\), dấu bằng xảy ra khi b = c.

\(a+c\ge2\sqrt{ac}\) , dấu bằng xảy ra khi a = c.

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{bc}.2\sqrt{ab}.2\sqrt{ac}=8abc\)

lại có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc=\left(a+b+c\right)\left(ab+bc+ca\right)\le\left(\frac{1}{8}+1\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\le\frac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\left(đpcm\right)\)

Dấu ''='' xảy ra khi a=b=c

5 tháng 8 2020

Sai đề rồi. Phải là CM \(a^n-b^n⋮a-b\)với mọi n thuộc N

5 tháng 8 2020

Hoặc là CM: \(a^n+b^n⋮a+b\)với mọi n lẻ

\(A=\frac{\sqrt{x}+1}{2\sqrt{x}+1}\Rightarrow\frac{1}{A}=\frac{2\sqrt{x}+1}{\sqrt{x}+1}=1+\frac{\sqrt{x}}{\sqrt{x}+1}\ge1\Rightarrow A\le1\)

Vậy MAX A=1 khi và chỉ khi x=0