Bài 4: Tìm hai số tự nhiên biết tổng của chúng là 25 và hai lần số thứ nhất hơn ba lần số thứ hai là 5 đơn vị.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: QN\(\perp\)MP(MNPQ là hình vuông)
QN\(\perp\)MS(SM\(\perp\)(MNPQ))
MP,MS cùng thuộc mp(SMP)
Do đó: QN\(\perp\)(SMP)
a.
Do chóp S.ABCD đều \(\Rightarrow SO\perp\left(ABCD\right)\)
\(\Rightarrow\) O là hình chiếu vuông góc của S lên (ABCD)
\(\Rightarrow\Delta OAB\) là hình chiếu vuông góc của \(\Delta SAB\) lên (ABCD)
b.
Gọi E là trung điểm CD \(\Rightarrow OE\) là đường trung bình tam giác BCD
\(\Rightarrow OE||BC\Rightarrow OE\perp CD\)
\(\Rightarrow CD\perp\left(SOE\right)\)
Trong mp (SOE), từ O kẻ \(OK\perp SE\)
\(OK\in\left(SOE\right)\Rightarrow CD\perp OK\)
\(\Rightarrow OK\perp\left(SCD\right)\)
Trong mp (ACK), qua A kẻ đường thẳng song song OK cắt CK kéo dài tại H
\(\Rightarrow AH\perp\left(SCD\right)\Rightarrow SH\) là hình chiếu vuông góc của SA lên (SCD)
\(\Rightarrow\widehat{ASH}\) là góc giữa SA và (SCD) hay \(\widehat{ASH}=\varphi\)
\(OE=\dfrac{1}{2}BC=\dfrac{a}{2}\)
Áp dụng hệ thức lượng trong tam giác vuông SOE:
\(OK=\dfrac{SO.OE}{\sqrt{SO^2+OE^2}}=\dfrac{a\sqrt{5}}{5}\)
O là trung điểm AC và \(OK||SH\Rightarrow OK\) là đường trung bình tam giác CAH
\(\Rightarrow AH=2OK=\dfrac{2a\sqrt{5}}{5}\)
\(OA=\dfrac{1}{2}AC=\dfrac{a\sqrt{2}}{2}\Rightarrow SA=\sqrt{SO^2+OA^2}=\dfrac{a\sqrt{6}}{2}\)
\(\Rightarrow sin\varphi=\dfrac{AH}{SA}=\dfrac{2\sqrt{30}}{15}\)
a) \(n\left(\Omega\right)=48\)
Gọi A là biến cố: "Bạn được chọn thích bóng chuyền hoặc bóng bàn."
Áp dụng công thức bù trừ, ta có:
\(n\left(A\right)=19+13-8=24\)
\(\Rightarrow P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{24}{48}=\dfrac{1}{2}\)
b) Xác suất là \(1-\dfrac{1}{2}=\dfrac{1}{2}\)
Ta có \(SA\perp\left(ABC\right)\) nên \(SA\perp BC\)
Lại có \(BC\perp AB\) nên \(CB\perp\left(SAB\right)\)
Do đó \(\widehat{SC,\left(SAB\right)}=\widehat{CSB}\)
Mặt khác, \(CB\perp\left(SAB\right)\Rightarrow CB\perp SB\) \(\Rightarrow\Delta SBC\) vuông tại B
Có \(SC=\sqrt{SA^2+AC^2}=\sqrt{a^2+\left(2a\right)^2}=a\sqrt{5}\)
\(CB=AC.\cos30^o=2a.\dfrac{\sqrt{3}}{2}=a\sqrt{3}\)
\(\Rightarrow\sin\widehat{CSB}=\dfrac{CB}{CS}=\dfrac{a\sqrt{3}}{a\sqrt{5}}=\sqrt{\dfrac{3}{5}}\)
\(\Rightarrow\widehat{CSB}=arc\sin\left(\sqrt{\dfrac{3}{5}}\right)\approx50,768^o\)
Vậy \(\widehat{SC,\left(SAB\right)}\approx50,768^o\)
Mình gửi đáp án rồi đó nhưng vì có hình nên nó chưa duyệt lên được. Bạn vào trang cá nhân của mình xem nhé.
Trong mp (ABB'A'), gọi J là giao điểm \(A'B_1\) và \(A_1B'\)
Trong mp \(\left(A_1B'C_1\right)\) qua J kẻ đường thẳng song song \(B'C_1\) cắt \(A_1C_1\) tại I
Áp dụng định lý Thales: \(\dfrac{A_1J}{JB'}=\dfrac{A'A_1}{B'B_1}=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{A_1J}{A_1B'}=\dfrac{1}{4}\)
\(C'C_1=\dfrac{3}{4}C'C=\dfrac{3a}{2}\Rightarrow B'C_1=\sqrt{B'C'^2+C'C_1^2}=\dfrac{a\sqrt{13}}{2}\)
Áp dụng định lý Thales: \(\dfrac{IJ}{B'C_1}=\dfrac{A_1J}{A_1B'}=\dfrac{1}{4}\Rightarrow IJ=\dfrac{1}{4}B'C_1=\dfrac{a\sqrt{13}}{8}\)
Lời giải:
Gọi hai số lần lượt là $a,b$. Theo bài ra ta có:
$a+b=25$
$2a-3b=5$
$\Rightarrow 3(a+b)+(2a-3b)=25.3+5$
$\Rightarrow 5a=80$
$\Rightarrow a=80:5=16$
$b=25-16=9$
Vậy hai số cần tìm là $16$ và $9$