Cho tam giác ABC vuông tại A, có AB=9, AC=12.Kẻ đường cao AH(H thuộc BC)
a) CM Tam giác HBA đồng dạng với tg ABC
b) Tính độ dài các đoạn thẳngBC, BH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a , Giá trị của phân thức \(\frac{-2}{x+1}\)dương khi : \(x+1\)là số âm . hay : \(x+1\)< \(0\)\(\Leftrightarrow\)\(x\)<\(-1\)
Vậy với x< -1 thì giá trị của phân thức : \(\frac{-2}{x+1}\) là số dương.
b, Giá trị của phân thức \(\frac{-3}{x+2}\)âm khi x+2 là số dương .hay : x+2 > 0 <=> x > -2.
Vậy với x > -2 thì giá trị phân thức \(\frac{-3}{x+2}\)là số âm.
c. Trường hợp 1 : để phân thức \(\frac{x-3}{x-4}\)là số dương khi : x-3 > 0 và x-4 > 0 hay : x> 3 và x> 4
Trường hợp 2 : Để phân thức \(\frac{x-3}{x-4}\)là số dương thì x-3 < 0 và x-4 < 0 hay : x < 3 và x < 4.
Vậy với x > 4 hoặc x < 3 thì phân thức \(\frac{x-3}{x-4}\) là số dương.
Do a,b,c là độ dài cạnh tam giác nên:
a<b+c
b<c+a
c<a+b
ta co:
a^2b +b^2c+c^2a+ca^2+bc^2+ab^2
= a^2(b+c) + b^2(c+a) + c^2(a+b)
> a^2.a +b^2.b+c^2.c =a^3+b^3+c^3
<=> a^2b +b^2c+c^2a+ca^2+bc^2+ab^2 - a^3-b^3-c^3 > 0
5x^2-10xy^2
=5x(x-2y2)
8x^3+1/27
=(2x)3+(1/3)3
=(2x+1/3)(4x2+2/3.x+1/9)
36-12x+x^2
=x2-2.x.6+62
=(x-6)2
(x-5)^2-16
=(x-5)2-42
=(x-5-4)(x-5+4)
=(x-9)(x-1)
\(x^3-x^2-2x^2+2x\)
\(=x^2\left(x-1\right)-2x\left(x-1\right)\)
\(=\left(x^2-2x\right)\left(x-1\right)\)
\(=\left(x-1\right)\left(x-2\right)x\)
Vì đây là tích 3 số tự nhiên liên tiếp nên sẽ chia hết cho 6
a) Xét 2 tam giác : ABC và HBA
Có : \(\widehat{BAC}=\widehat{BAH}\left(=90^o\right)\)
\(\widehat{B}\)là góc chung
Do đó : \(\Delta ABC~\Delta HBA\left(g-g\right)\left(đpcm\right)\)
b) +) Áp dụng định lý Py - ta - go , ta có :
\(BC^2=AB^2+AC^2\)
\(=9^2+12^2\)
\(BC=\sqrt{225}=15cm\)