Tìm a, b là các chữ số để :
ab99 chia hết cho 9
Và a-b = 9
Giúp mình nhanh nhé , ai xong trước mình tick ✔
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ƯCLN\left(x;y\right)=\frac{xy}{BCNN\left(x;y\right)}=\frac{20}{10}=2\)
Đặt \(x=2k,y=2t\) (y và t là 2 số nguyên tố cùng nhau)
\(xy=20\Rightarrow2k.2t=20\Rightarrow k.t=5\)
\(\Rightarrow k\inƯ\left(5\right)=\left\{1;5\right\}\)
\(\Rightarrow x=2k\in\left\{2;10\right\}\)
Nếu x = 2 thì y = 10
Nếu x = 10 thì y = 2
Vậy x = 2 và y = 10 hoặc x = 10 và y = 2
Ta có : \(\left(3x+5\right)⋮\left(x+1\right)\)
\(\Leftrightarrow\left(3x+3+2\right)⋮\left(x+1\right)\)
\(\Leftrightarrow3\left(x+1\right)+2⋮\left(x+1\right)\)
Mà : \(3\left(x+1\right)⋮\left(x+1\right)\)
\(\Rightarrow2⋮\left(x+1\right)\)
\(\Rightarrow x+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\)
Với n = 1 thì 1! = 1 = 1^2 là số chính phương.
Với n = 2 thì 1! + 2! = 3 không là số chính phương.
Với n = 3 thì 1! + 2! + 3! = 1 + 1.2 + 1.2.3 = 9 = 33 là số chính phương.
Với n >=4 ta có 1! + 2! + 3! + 4! = 1 + 1.2 + 1.2.3 + 1.2.3.4 = 33, còn 5!; 6!; ... ; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + ... n! có tận cùng bởi chữ số 3, nên nó không phải là số chính phương.
Vậy có 2 số tự nhiên n thoả mãn đề bài là :n = 3
mk nghĩ là người kiên nhẫn nhất nhưng đã chết và biến thành ma (ý kiến riêng)
cắt đôi cà chua,dùng kim mũi mác cạo 1 ít thịt quả cà chua đưa vào bản kính đã có sẵn giọt nước rồi đậy lá kính lên.Đưa tiêu bản lên quan sát dưới kính hiển vi
hk tốt
b, Theo đề bài ta có : 3n + 2 \(⋮\)2n - 3
\(\Rightarrow\) 2 x ( 3n + 2 ) \(⋮\) 2n - 3
\(\Rightarrow\) 6n + 4 \(⋮\)2n - 3
\(\Rightarrow\)6n - 9 + 13 \(⋮\)2n - 3
\(\Rightarrow\)3 x ( 2n - 3 ) +13 \(⋮\)2n - 3
Vì 3 x ( 2n - 3 ) \(⋮\)2n - 3 \(\Rightarrow\)13 \(⋮\)2n - 3
\(\Rightarrow\)2n - 3 \(\in\)Ư( 13 )
\(\Rightarrow\)2n - 3 \(\in\){ 13 ; -13 }
Nếu 2n -3 = 13
2n = 16
n = 8
Nếu 2n - 3 = -13
2n = -10
n = -5
Vậy n = 8 hoặc n = -5
a)
Vì p là số nguyên tố lớn hơn 3 => p thuộc dạng 3k + 1 hoặc 3k + 2.
*) Với p = 3k + 1 => p + 8 = 3k + 9 chia hết cho 3 => hợp số => vô lí vì p + 8 là số nguyên tố
*) Với p = 3k + 2 => p + 8 = 3k + 10 chia 3 dư 1 (thỏa mãn)
=> p =3k + 2 => p + 100 = 3k + 102 chia hết cho 3 => hợp số
=> p + 100 là hợp số
b)
Xét trường hợp p= 2=> p+10= 12(không phải là số nguyên tố) Xét trường hợp p= 3=> p+ 10= 13; p+ 14= 17 (đều là số nguyên tố) Xét p>3=> p có một trong 2 dang 3k+1; 3k- 1 +)Với p= 3k+1=> p+14= 3k+1+14=3k+15 chia hết cho 3 +)Với p= 3k-1=> p- 10= 3k- 1+ 10= 3k+9 chia hết cho 3 Vậy p= 3 thì p+10 và p+14 cũng là số nguyên tố.
a)
Vì p là số nguyên tố lớn hơn 3 => p thuộc dạng 3k + 1 hoặc 3k + 2.
*) Với p = 3k + 1 => p + 8 = 3k + 9 chia hết cho 3 => hợp số => vô lí vì p + 8 là số nguyên tố
*) Với p = 3k + 2 => p + 8 = 3k + 10 chia 3 dư 1 (thỏa mãn)
=> p =3k + 2 => p + 100 = 3k + 102 chia hết cho 3 => hợp số
=> p + 100 là hợp số.
b)
Xét trường hợp p= 2=> p+10= 12(không phải là số nguyên tố)
Xét trường hợp p= 3=> p+ 10= 13; p+ 14= 17 (đều là số nguyên tố)
Xét p>3=> p có một trong 2 dang 3k+1; 3k- 1
+)Với p= 3k+1=> p+14= 3k+1+14=3k+15 chia hết cho 3
+)Với p= 3k-1=> p- 10= 3k- 1+ 10= 3k+9 chia hết cho 3
Vậy p= 3 thì p+10 và p+14 cũng là số nguyên tố
đáp án:
a=9
b=0
cho k mk nhé
Bạn ơi bạn có thể ghi rõ bước làm không