K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2021

Gọi vận tốc ô tô đi từ A là 

Vận tốc ô tô đi từ B là 

Vì vận tốc ô tô đi từ A lớn hơn vận tốc ô tô đi từ B là km/h nên ta có phương trình: 

Đổi: 1hp=h

Sau h ô tô đi từ A đi được:  (km)

Sau h ô tô đi từ B đi được:  (km)

Sau h 2 xe gặp nhau có nghĩa là cả 2 xe đã đi hết đoạn đường AB nên ta có phương trình: 

 

Từ (1), (2) ta có hệ phương trình:

Vậy vận tốc ô tô đi từ A là km/h, vận tốc ô tô đi từ B là 40km/h

26 tháng 3 2021

         \(7+2\sqrt{x}-x=\left(2+\sqrt{x}\right)\sqrt{7-x}\left(ĐKXĐ:0\le x\le7\right)\)

\(\Leftrightarrow\) \(\left(\sqrt{7-x}\right)^2+2\sqrt{x}-2\sqrt{7-x}-\sqrt{x}.\sqrt{7-x}=0\)

\(\Leftrightarrow\) \(\sqrt{x}.\left(2-\sqrt{7-x}\right)-\sqrt{7-x}.\left(2-\sqrt{7-x}\right)=0\)

\(\Leftrightarrow\) \(\left(2-\sqrt{7-x}\right).\left(\sqrt{x}-\sqrt{7-x}\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}2-\sqrt{7-x}=0\\\sqrt{x}-\sqrt{7-x}=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{7-x}=2\\\sqrt{7-x}=\sqrt{x}\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}7-x=4\\7-x=x\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=3\left(TMĐK\right)\\x=\frac{7}{2}\left(TMĐK\right)\end{cases}}\)

26 tháng 3 2021

cảm ơn nha, thầy tớ cho bài gấp quá, mà có hiểu gì cái căn này đâu, hú hồn 

26 tháng 3 2021

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-\frac{-2m-8}{1}=4m+8\\x_1x_2=\frac{c}{a}=m^2-8\end{cases}}\)

mà \(\left(x_1+x_2\right)^2=4m+8\Rightarrow x_1^2+x_2^2=4m+8-2x_1x_2\)

\(\Rightarrow x_1^2+x_2^2=4m+8-2\left(m^2-8\right)=4m+8-2m^2+16=4m+24-2m^2\)

hay \(A=-2m^2+4m+24-\left(x_1+x_2\right)\)

\(=-2m^2+4m+24-4m-8=-2m^2+16\le16\)

Dấu ''='' xảy ra khi m = 0 

26 tháng 3 2021

Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=m+1\end{cases}}\)

Khi đó x12 + x22 = 0 <=> ( x1 + x2 )2 - 2x1x2 = 0

<=> 42 - 2( m + 1 ) = 0

<=> 16 - 2m - 2 = 0

<=> -2m = -14 <=> m = 7 

Vậy với m = 7 thì phương trình có hai nghiệm thỏa mãn x12 + x22 = 0

26 tháng 3 2021

Ta có:

\(A=\frac{a^2}{b-1}+\frac{b^2}{a-1}\ge2\sqrt{\frac{a^2}{b-1}.\frac{b^2}{a-1}}\)

\(=2.\frac{a}{\sqrt{a-1}}.\frac{b}{\sqrt{b-1}}\)

Vì \(\frac{a}{\sqrt{a-1}}\ge2;\frac{b}{\sqrt{b-1}}\ge2\Rightarrow A\ge8\)

=> min A=8 <=> a=b=2

26 tháng 3 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(A=\frac{a^2}{b-1}+\frac{b^2}{a-1}\ge\frac{\left(a+b\right)^2}{a+b-2}\)

Đặt a + b - 2 = x => x > 0

Khi đó \(A\ge\frac{\left(a+b\right)^2}{a+b-2}=\frac{\left(x+2\right)^2}{x}=\frac{x^2+4x+4}{x}=\left(x+\frac{4}{x}\right)+4\ge2\sqrt{x\cdot\frac{4}{x}}+4=8\)( AM-GM )

Đẳng thức xảy ra <=> x = 2 => a=b=2

Vậy MinA = 8 <=> a=b=2

11 tháng 5 2021

bạn tự vẽ hình nha

ở câu b phải là đường thẳng QH chứ ko phải đt Q

bài làm

a,

SP, SQ  là 2 tiếp tuyến của ( O )

=> SP vg với OP và SQ vg vs OQ

=> SPO = 90 độ và SQO = 90 độ

Xét tứ giác SPOQ có : SPO + SQO = 90 độ +  90 độ = 180 độ

Mà 2 góc này ở vị trí đối nhau của tứ giác SPOQ

=> Tứ giác SPOQ nội tiếp được đường tròn ( đpcm )

b, 

H là trung điểm DE => OH vg DE ( quan hệ giữa đk và dây cung trong ( o ) )

=> OHS = 90 độ

Xét tg SOHQ có : OHS = OQS = 90 độ

Mà H và Q là 2 đỉnh kề nhau cùng nhìn SO dưới 1 góc = 90 độ

=> Tg SOHQ nt đc đường tròn

=> 4 điểm S, O, H, Q cùng thuộc 1 đtr        (1)

Tg SPOQ nt ( cmt ) => 4 điểm S, P, O, Q cùng thuộc 1 đtr       (2)

Từ (1) và (2) => 5 điểm S, P, O, H, Q cùng thuộc 1 đtr

=> Tg SPHQ nt

=> SPQ = SHQ ( 2 góc nt cùng chắn cung SQ của đtr ngoại tiếp tg SPHQ )

Mà SPQ = PGQ ( góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung PQ )

=> SHQ = PGQ

Mặt khác : SHQ và PGQ là 2 góc ở vị trí đồng vị của 2 đt PG và SE

=> PG // SE ( đpcm)

c,

Chưa nghĩ ra

25 tháng 3 2021

??????????????????????????????????????????????