(x-3) + (x-5) + (x-7) +...+ (x-19) = 3618
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: x+|-2|=0
=>x+2=0
=>x=-2
b: \(4x-20=2^5:2^3\)
=>\(4x-20=2^2=4\)
=>\(4x=20+4=24\)
=>\(x=\dfrac{24}{4}=6\)
a) x+|-2| = 0
⇒|x| = 0-(-2)
⇒|x| = 2⇒x= 2 hoặc x= -2
Vậy x = 2 hoặc x = -2 ϵ z
b) 4x - 20 = 25 : 23
⇒ 4x - 20 = 32 : 8
⇒ 4x - 20 = 4
⇒ 4x = 4+20
⇒4x = 24
⇒ x = 6
Vậy x = 6 ϵ z
Bài 5:
Tổng số tiền Lan phải trả khi mua đồ là:
\(2\cdot26500+5\cdot18000+2\cdot15000=173000\left(đ\right)\)
Số tiền mẹ Lan còn là:
\(200000-173000=27000\left(đ\right)\)
Bài 5:
Số tiền phải trả cho 2kg khoai tây là:
\(2\cdot26500=53000\left(đồng\right)\)
Số tiền phải trả cho 5kg gạo là:
\(5\cdot18000=90000\left(đồng\right)\)
Số tiền phải trả cho 2 nải chuối là:
\(2\cdot15000=30000\left(đồng\right)\)
Số tiền còn lại là:
200000-53000-90000-30000=27000(đồng)
Bài 6:
Đặt x=*
Đặt \(A=\overline{x63x}\)
A chia hết cho 5 và 2 nên x=0
=>\(A=\overline{0630}=630\)
Vì 630 chia hết cho cả 3 và 9
nên A=630 thỏa mãn yêu cầu đề bài
=>x=0
=>*=0
Bài 7:
a: \(126=2\cdot3^2\cdot7;210=2\cdot3\cdot5\cdot7\)
=>\(ƯCLN\left(126;210\right)=2\cdot3\cdot7=42\)
\(126⋮x;210⋮x\)
=>\(x\inƯC\left(126;210\right)\)
=>\(x\inƯ\left(42\right)\)
mà 15<x<30
nên x=21
b: \(12=2^2\cdot3;21=3\cdot7;28=2^2\cdot7\)
=>\(BCNN\left(12;21;28\right)=2^2\cdot3\cdot7=4\cdot3\cdot7=84\)
\(x⋮12;x⋮21;x⋮28\)
=>\(x\in B\left(84\right)\)
mà 150<x<300
nên \(x\in\left\{168;252\right\}\)
a: \(\left[\left(-21,8\right)+4,125\right]+\left[11,8+\left(-2,125\right)\right]\)
=-21,8+4,125+11,8-2,125
=(4,125-2,125)+(-21,8+11,8)
=2-10
=-8
b: \(\left(-124,5\right)+\left(-6,24+124,5\right)\)
\(=-124,5-6,24+124,5\)
=-6,24
\(a,\left[\left(-21,8\right)+4,125\right]+\left[11,8+\left(-2,125\right)\right]\)
\(=-21,8+4,125+11,8-2,125\)
\(=\left[\left(-21,8\right)+11,8\right]+\left(4,125-2,125\right)\)
\(=-10+2\)
\(=-8\)
\(b,\left(-124,5\right)+\left(-6,24+124,5\right)\)
\(=-124,5-6,24+124,5\)
\(=\left[\left(-124,5\right)+124,5\right]-6,24\)
\(=0-6,24\)
\(=-6,24\)
$\color{#90EE90}{\text{4}}$ $\color{#B0E0E6}{\text{56}}$
a)
\(\left(-12,5\right)+3.4+12,5+\left(-3,4\right)\\ =\left(12,5-12,5\right)+\left(3,4-3,4\right)\\ =0+0=0\)
b)
\(32,8+4,2+\left(-4,3\right)+\left(-32,8\right)+4,3\\ =\left(32,8-32,8\right)+\left(4,3-4,3\right)+4,2\\ =0+0+4,2\\ =4,2\)
c)
\(-\left(42,5+150\right)\cdot2,5-7,5\cdot2,5\\ =2,5\left(-42,5-150-7,5\right)\\ =2,5\cdot\left(-50-150\right)\\ =2,5\cdot-200\\ =-500\)
d)
\(\left(-2,45\right)\cdot2,6+2,6\cdot\left(-7,55\right)\\ =2,6\cdot\left(-2,45-7,55\right)\\ =2,6\cdot-10\\ =-26\)
a: \(\left(-12,5\right)+3,4+12,5+\left(-3,4\right)\)
\(=\left(-12,5+12,5\right)+\left(3,4-3,4\right)\)
=0+0=0
b: \(32,8+4,2+\left(-4,3\right)+\left(-32,8\right)+4,3\)
\(=\left(32,8-32,8\right)+\left(4,3-4,3\right)+4,2\)
=0+0+4,2
=4,2
c: \(-\left(42,5+150\right)\cdot2,5-7,5\cdot2,5\)
\(=2,5\cdot\left(-42,5-150-7,5\right)\)
\(=2,5\cdot\left(-200\right)=-500\)
d: Sửa đề: \(\left(-2,45\right)\cdot2,6+2,6\cdot\left(-7,55\right)\)
\(=2,6\left(-2,45-7,55\right)\)
\(=2,6\cdot\left(-10\right)=-26\)
a: \(\left(-\dfrac{2}{3}-\dfrac{3}{7}\right):\dfrac{4}{5}+\left(-\dfrac{1}{3}+\dfrac{4}{7}\right):\dfrac{4}{5}\)
\(=\left(-\dfrac{2}{3}-\dfrac{3}{7}-\dfrac{1}{3}+\dfrac{4}{7}\right):\dfrac{4}{5}\)
\(=\left(-1+\dfrac{1}{7}\right)\cdot\dfrac{5}{4}=\dfrac{-6}{7}\cdot\dfrac{5}{4}=\dfrac{-30}{28}=-\dfrac{15}{14}\)
b: \(\dfrac{5}{9}:\left(\dfrac{1}{11}-\dfrac{5}{22}\right)+\dfrac{5}{9}:\left(\dfrac{1}{15}-\dfrac{2}{3}\right)\)
\(=\dfrac{5}{9}:\dfrac{-3}{22}+\dfrac{5}{9}:\left(\dfrac{1}{15}-\dfrac{10}{15}\right)\)
\(=\dfrac{5}{9}\cdot\dfrac{-22}{3}+\dfrac{5}{9}:\dfrac{-9}{15}\)
\(=\dfrac{5}{9}\cdot\dfrac{-22}{3}+\dfrac{5}{9}\cdot\dfrac{15}{-9}\)
\(=\dfrac{5}{9}\left(-\dfrac{22}{3}-\dfrac{5}{3}\right)=\dfrac{5}{9}\cdot\dfrac{-27}{3}=\dfrac{5}{9}\cdot\left(-9\right)=-5\)
c: \(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right)\cdot\left(\dfrac{4}{5}-\dfrac{3}{4}\right)^2\)
\(=\left(\dfrac{12}{12}+\dfrac{8}{12}-\dfrac{3}{12}\right)\cdot\left(\dfrac{16}{20}-\dfrac{15}{20}\right)^2\)
\(=\dfrac{17}{12}\cdot\left(\dfrac{1}{20}\right)^2=\dfrac{17}{12}\cdot\dfrac{1}{400}=\dfrac{17}{4800}\)
d: \(2:\left(\dfrac{1}{2}-\dfrac{2}{3}\right)^2=2:\left(\dfrac{3}{6}-\dfrac{4}{6}\right)^2\)
\(=2:\left(-\dfrac{1}{6}\right)^2=2:\dfrac{1}{36}=72\)
a; (- \(\dfrac{2}{3}\) - \(\dfrac{3}{7}\)): \(\dfrac{4}{5}\) + (- \(\dfrac{1}{3}\) + \(\dfrac{4}{7}\)): \(\dfrac{4}{5}\)
= (- \(\dfrac{2}{3}\) - \(\dfrac{3}{7}\)) x \(\dfrac{5}{4}\) + (- \(\dfrac{1}{3}\) + \(\dfrac{4}{7}\)) x \(\dfrac{5}{4}\)
= (- \(\dfrac{2}{3}\) - \(\dfrac{3}{7}\) - \(\dfrac{1}{3}\) + \(\dfrac{4}{7}\)) x \(\dfrac{5}{4}\)
= [ (- \(\dfrac{2}{3}\) - \(\dfrac{1}{3}\)) - (\(\dfrac{3}{7}\) - \(\dfrac{4}{7}\))] x \(\dfrac{5}{4}\)
= [ - 1 + \(\dfrac{1}{7}\)] x \(\dfrac{5}{4}\)
= [- \(\dfrac{7}{7}\) + \(\dfrac{1}{7}\)] x \(\dfrac{5}{4}\)
= - \(\dfrac{6}{7}\) x \(\dfrac{5}{4}\)
= - \(\dfrac{15}{14}\)
\(a\cdot b=420\)
=>\(\left(a;b\right)\in\){(1;420);(420;1);(2;210);(210;2);(3;140);(140;3);(4;105);(105;4);(5;84);(84;5);(6;70);(70;6);(7;60);(60;7);(10;42);(42;10);(12;35);(35;12);(14;30);(30;14);(15;28);(28;15);(20;21);(21;20)}
mà a>b>10
nên \(\left(a;b\right)\in\left\{\left(21;20\right);\left(28;15\right);\left(35;12\right);\left(30;14\right)\right\}\)
mà BCNN(a;b)=210
nên \(\left(a;b\right)\in\left\{\left(30;14\right)\right\}\)
Ta có:
\(27^n< 81^3\\ \Rightarrow\left(3^3\right)^n< \left(3^4\right)^3\\\Rightarrow 3^{3n}< 3^{12}\\ \Rightarrow3n< 12\\\Rightarrow n< \dfrac{12}{3}=4\)
Mà n là số tự nhiên nên:
\(n\in\left\{0,1,2,3\right\}\)
Vậy \(n\in\left\{0,1,2,3\right\}\)
a; 285 + 470 + 115 + 230
= (285 + 115) + (470 + 230)
= 400 + 700
= 1100
b; 571 + 216 + 129 + 124
= (571 + 129) + (216 + 124)
= 700 + 340
= 1040
\(\left(x-3\right)+\left(x-5\right)+\left(x-7\right)+...+\left(x-19\right)=3618\\ x-3+x-5+x-7+...+x-19=3618\\ 9x-\left(3+5+7+...+19\right)=3618\\ 9x-99=3618\\ 9x=3618+99\\ 9x=3717\\ x=3717:9\\ x=413\)
Vậy...