Tìm hai số biết tổng của chúng bằng 16, tích bằng 84
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ta có \(11\equiv1mod10\Rightarrow11^{200}\equiv1mod10\)
nên \(11^{200}-1\equiv0mod10\). Vậy \(11^{200}-1\) chia hết cho 10.
b. ta có \(12\equiv2mod10\Rightarrow12^{200}\equiv2^{200}mod10\)
nên \(12^{200}-2^{200}\equiv0mod10\). Vậy \(12^{200}-2^{200}\) chia hết cho 10.
Bài này lần đầu em gặp, có gì sai góp ý cho em nhé, check hộ em \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)x-mx=1-m\\mx+y=m+1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-m\\m\left(1-m\right)+y=m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1-m\\m-m^2+y=m+1\end{cases}}\)
\(\left(2\right)\Rightarrow-m^2+y=1\Leftrightarrow y=1+m^2\)
mà : \(x+y=4\)hay \(1-m+1+m^2=4\Leftrightarrow m^2-m-2=0\)
Ta có : \(\Delta=1-4\left(-2\right)=9>0\)
\(m_1=\frac{1-3}{2}=-1;m_2=\frac{1+3}{2}=2\)
TH1 : Thay m = -1 vào hệ phương trình trên ta được
\(\hept{\begin{cases}-2x+y=2\\-x+y=0\end{cases}\Leftrightarrow\hept{\begin{cases}-x=2\\-x+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=-2\end{cases}}}\)
TH2 : Thay m = 2 vào hệ phương trình trên ta được :
\(\hept{\begin{cases}x+y=2\\2x+y=3\end{cases}\Leftrightarrow\hept{\begin{cases}-x=-1\\x+y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
Vậy ...
Em nghĩ đề phải là x1^3 + x2^3 chứ :<
Để phương trình có 2 nghiệm : \(\Delta\ge0\)
hay \(25-4\left(3m-1\right)=25-12m+4=29-12m\ge0\)
\(\Leftrightarrow-12m\ge-29\Leftrightarrow m\le\frac{29}{12}\)
Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-5\\x_1x_2=\frac{c}{a}=3m-1\end{cases}}\)
mà \(\left(x_1+x_2\right)^2=25\Rightarrow x_1^2+x_2^2=25-2x_1x_2=25-6m+2=27-6m\)
Ta có : \(x_1^3+x_2^3+3x_1x_2=75\Leftrightarrow\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)+3x_1x_2=75\)
\(\Leftrightarrow-5\left(27-6m-3m+1\right)+3\left(3m-1\right)=75\)
\(\Leftrightarrow-5\left(28-9m\right)+9m-3=75\)
\(\Leftrightarrow-140+45m+9m-3=75\Leftrightarrow m=\frac{109}{27}\)( ktm )
2] cao của hình trụ là h (cm)
Đk: h > p
Ta có: Sxq = 2πRh
Stp = 2πRh + 2πR^2
Theo bài ra ta có: Stp = 2Sxq
=> 2πRh + 2πR^2 = 2.2πRh
⇔ 2πR^2 = 2πRh
⇒ h = R = 6 cm
Thể tích V = πR^2.h = π.6^2.6 = 216π (cm3)
Vậy . . .
\(x^2-\left(2m+1\right)x+m^2+m-6=0\)
\(\Delta=\left(2m+1\right)^2-4m^2-4m+24\)
\(=4m^2+4m+1-4m^2-3m+24\)
\(=25>0\)
\(\Rightarrow\)pt luôn có hai nghiệm phân biệt \(x_1,x_2\)\(\forall m\)
Theo hệ thức Vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=2m+1\\x_1.x_2=m^2+m-6\end{cases}}\)
Ta có: \(\left(x_1-x_2\right)^2=x_1^2-2x_1x_2+x_2^2\)
\(=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=\left(2m+1\right)^2-4\left(m^2+m-6\right)=25\)
\(\Rightarrow x_1-x_2=\pm5\)
Ta có\(\left|x_1^2-x_2^2\right|=5\)
\(\Leftrightarrow\left|\left(x_1-x_2\right)\left(x_1+x_2\right)\right|=5\)
\(\Leftrightarrow\orbr{\begin{cases}\left|10m+5\right|=50\\\left|-10-5\right|=50\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}10m+5=50\\-10m-5=50\end{cases}}\)
( chỗ này mình ko biết trình bày đúng không vì có phá giá trị tuyệt đối thì nó vẫn là hoán vị thôi )
\(\Leftrightarrow\orbr{\begin{cases}m=\frac{9}{2}\\m=\frac{-11}{2}\end{cases}}\)
Vậy \(m\in\left\{\frac{9}{2};\frac{-11}{2}\right\}\)để ...
( check hộ mình nha )
Gọi 2 số đó lần lượt là a ; b
Theo bài ra ta có hệ sau : \(\hept{\begin{cases}a+b=16\\ab=84\end{cases}\Leftrightarrow\hept{\begin{cases}a=16-b\left(1\right)\\ab=84\left(2\right)\end{cases}}}\)
Thế (1) vào (2) ta được :
\(b\left(16-b\right)=84\Leftrightarrow16b-b^2=84\Leftrightarrow b^2-16b+84=0\)
Ta có : \(\Delta=\left(-16\right)^2-4.84=256-336< 0\)
Vậy hệ phương trình vô nghiệm hay ko có 2 số thỏa mãn đề bài
sâu zi, chưa đọc phần comment của bạn bên dưới
Gọi 2 số đó lần lượt là a ; b
Theo bài ra ta có hệ sau : \(\hept{\begin{cases}a+b=16\\ab=64\end{cases}\Leftrightarrow\hept{\begin{cases}a=16-b\left(1\right)\\ab=64\left(2\right)\end{cases}}}\)
Thay (1) vào (2) ta được : \(\left(16-b\right)b=64\Leftrightarrow b^2-16b+64=0\)
Ta có : \(\Delta=\left(-16\right)^2-4.64=256-256=0\)
Vậy phương trình trên có nghiệm kép : \(b=\frac{-\left(-16\right)}{2}=8\)(*)
Thay (*) vào (1) ta được : \(a=16-8=8\)
Vậy hệ phuwong trình có một nghiệm ( a ; b ) = ( 8 ; 8 )
hay 2 số cần tìm là a = 8 ; b = 8