Bài 36 (trang 123 SGK Toán 9 Tập 1)
Cho đường tròn tâm $O$ bán kính $OA$ và đường tròn đường kính $OA$.
a) Hãy xác định vị trí tương đối của hai đường tròn.
b) Dây $AD$ của đường tròn lớn cắt đường tròn nhỏ ở $C$. Chứng minh rằng $AC = CD$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 5c) Phương trình hoành độ giao điểm \(\left(P\right)\)và \(\left(d\right)\)là:
\(\frac{1}{2}x^2=2x+m\Leftrightarrow x^2-4x-2m=0\)(*)
Để \(\left(P\right)\)và \(\left(d\right)\)cắt nhau tại hai điểm phân biệt thì phương trình (*) có hai nghiệm phân biệt suy ra
\(\Delta'=4+2m>0\Leftrightarrow m>-2\).
Theo Viet:
\(\hept{\begin{cases}x_1+x_2=4\\x_1x_2=-2m\end{cases}}\)
\(\left(x_1x_2+1\right)^2=x_1+x_2+x_1x_2+3\)
\(\Leftrightarrow\left(-2m+1\right)^2=4-2m+3\)
\(\Leftrightarrow\orbr{\begin{cases}m=-1\\m=\frac{3}{2}\end{cases}}\)(thỏa mãn)
bài 7 : a ) thay m = 3 vào hàm số y = mx +4 có : y = 3x + 4
pt hoành độ giao đieẻm của 2 đồ thị hafm số y =x2 và y = 3x + 4
x2 = 3x + 4
\(\Leftrightarrow\) x2 - 3x -4 = 0
a - b + c = 1 + 3 - 4 = 0
\(\Rightarrow\)pt có 2 nghiệm x1 = -1 ; x2 = -
thay x = -1 vào hàm số y = x2 có : y = (-1)2 = 1
thay x = 4 vào hàm số y = x2 có : y = 42 = 16
vậy toạ độ giao điểm cần tìm là ( -1 ; 1 ) ; (4 ; 16 )
Đổi 3h36 phút = \(3,6h\)
Gọi thời gian mà vòi thứ 1 chảy 1 mình đầy bể là x ( giờ )\(\left(x>3,6\right)\)
Gọi thời gian mà vòi thứ 2 chảy 1 mình đầy bể là y ( giờ ) \(\left(y>3,6\right)\)
1 giờ vòi 1 chảy được 1/x ( bể )
1 giờ vòi 2 chảy được 1/y ( bể )
Cả 2 vòi 1 giờ chảy được: \(\frac{1}{3,6}\left(h\right)\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{3,6}\left(1\right)\)
Vì nếu hai vòi chảy trong 1,5h rồi khóa vòi 1, vòi 2 chảy trong 3h nữa thì đầy bể nên ta có:
\(\frac{1,5}{x}+\frac{1,5}{y}+\frac{3}{y}=1\left(2\right)\)
Từ (1) và (2) ta có hệ pt: \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{3,6}\\\frac{1,5}{x}+\frac{4,5}{y}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1,5}{x}+\frac{1,5}{y}=\frac{5}{12}\\\frac{1,5}{x}+\frac{4,5}{y}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{3}{y}=\frac{7}{12}\\\frac{1,5}{x}+\frac{4,5}{y}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{36}{7}\left(tm\right)\\x=12\left(tm\right)\end{cases}}\)
Vậy vòi 1 chảy 1 mình trong 12h đầy bể, vòi 2 chảy 1 mình trong 36/7 giờ thì đầy bể
( đúng ko ta )
\(\frac{2+\sqrt{3}}{2\sqrt{2}+\sqrt{3}}=\frac{2+\sqrt{3}}{\frac{\left(2\sqrt{2}+\sqrt{3}\right)\left(2\sqrt{2}-\sqrt{3}\right)}{2\sqrt{2}-\sqrt{3}}}=\frac{\left(2+\sqrt{3}\right)\left(2\sqrt{2}-\sqrt{3}\right)}{5}\)
\(=\frac{4\sqrt{2}-2\sqrt{3}-3+2\sqrt{6}}{5}\)
mình làm thử vì mình chỉ quen trục căn thức ở tử thôi
\(\frac{1}{1+\sqrt{2}+\sqrt{3}}=\frac{1+\sqrt{2}-\sqrt{3}}{\left(1+\sqrt{2}+\sqrt{3}\right)\left(1+\sqrt{2}-\sqrt{3}\right)}=\frac{1+\sqrt{2}-\sqrt{3}}{1+2+2\sqrt{2}-3}\)
\(=\frac{1+\sqrt{2}-\sqrt{3}}{2\sqrt{2}}\)
Vẽ OM⊥AB⇒OM⊥CD.
Xét đường tròn (O;OC) (đường tròn nhỏ) có OM là một phần đường kính, CD là dây và OM⊥CD nên M là trung điểm của CD hay MC=MD (định lý)
Xét đường tròn (O;OA) (đường tròn lớn) có OM là một phần đường kính, AB là dây và OM⊥AB nên M là trung điểm của AB hay MA=MB (định lý)
Ta có MA=MB và MC=MD (cmt) nên trừ các đoạn thẳng theo vế với vế ta được MA−MC=MB−MD ⇒AC=BD.
Nhận xét. Kết luận bài toán vẫn được giữ nguyên nếu C và D đổi chỗ cho nhau.
á em lộn
a) Cho hai đường tròn (O; R)(O; R) và (O′; r)(O′; r) với R>r. Nếu OO′=R−rOO′=R−r thì hai đường tròn tiếp xúc trong.
b) +) Nếu tam giác có ba đỉnh nằm trên đường tròn và có 1 cạnh là đường kính của đường tròn đó thì tam giác đó là tam giác vuông.
+) Trong một đường tròn, đường kính vuông góc với dây thì đi qua trung điểm của dây đó.