Giải các phương trình sau:
a) \(9x^2\)(2x - 3)= 0
b) (4x+2)(\(x^2\)+1)=0
c) \(\left(3x-2\right)^2\)(x+1)(x-2) =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ∆ABC vuông tại A (gt)
⇒ AB ⊥ AC
⇒ ∠CAB = 90⁰
⇒ ∠EAF = 90⁰
Do E, F là hình chiếu của D lên AB, AC (gt)
⇒ ∠AED = ∠AFD = 90⁰
Tứ giác AEDF có:
∠EAF = ∠AED = ∠AFD = 90⁰
⇒ AEDF là hình chữ nhật
b) Do I là giao điểm của EF và AD (gt)
⇒ I là trung điểm của AD
Lại có:
H là trung điểm của DC (gt)
⇒ IH là đường trung bình của ∆ACD
⇒ IH // AC và IH = AC : 2
Do G là trung điểm của AC (gt)
⇒ CG = AC : 2
⇒ IH = CG = AC : 2
Do IH // AC (cmt)
⇒ IH // AG
Tứ giác IHCG có:
IH // CG (cmt)
IH = CG (cmt)
⇒ IHCG là hình bình hành
c) Do E là hình chiếu của D lên AB (gt)
⇒ DE ⊥ AB
Mà AC ⊥ AB (cmt)
⇒ DE // AC
⇒ DK // AC
Tứ giác ADKC có:
DK // AC (cmt)
DK = AC (gt)
⇒ ADKC là hình bình hành
⇒ CK // AD
d) Do IH // CG (cmt)
⇒ IH // AC
Mà AC ⊥ AB (cmt)
⇒ IH ⊥ AB
⇒ HI là đường cao của ∆HAB
Do AD là đường cao của ∆ABC (gt)
⇒ AD ⊥ BC
⇒ AD ⊥ BH
⇒ AD là đường cao của ∆HAB
∆HAB có:
HI là đường cao (cmt)
AD là đường cao thứ hai (cmt)
Mà I là giao điểm của HI và AD
⇒ I là giao điểm của ba đường cao của ∆HAB
⇒ I là trực tâm của ∆HAB
Giải:
Số kẹo Hà cho bạn lần đầu là: 40 x \(\dfrac{1}{5}\) = 8 (cái)
Tổng số kẹo Hà cho bạn là: 8 + 2 = 10 (cái)
Số kẹo Hà còn lại sau khi cho bạn là: 40 - 10 = 30 (cái)
Đáp số: 30 cái
Đây là toán nâng cao hai hiệu số, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
Hiệu số cà rốt mỗi con thỏ trong hai cách chia là: 4 - 3 = 1 (củ)
Hiệu số cà rốt trong hai cách chia là: 8 - 2 = 6 (củ)
Số thỏ là: 6 : 1 = 6 (con)
Số cà rốt là: 3 x 6 + 8 = 26 (củ)
Đáp số: thỏ 6 con, cà rốt có 26 củ
a: Xét tứ giác BHCK có
M là trung điểm chung của BC và HK
=>BHCK là hình bình hành
b: BHCK là hình bình hành
=>BH//CK và BK//CH
Ta có: BH//CK
BH\(\perp\)AC
Do đó: CK\(\perp\)CA
Ta có: BK//CH
AB\(\perp\)CH
Do đó; BK\(\perp\)BA
c: Gọi O là giao điểm của HI và BC
BC là đường trung trực của HI
=>BC\(\perp\)HI tại O và O là trung điểm của HI
Xét ΔHIK có
O,M lần lượt là trung điểm của HI,HK
=>OM là đường trung bình của ΔHIK
=>OM//IK
=>IK//BC
Xét ΔCHI có
CO là đường cao
CO là đường trung tuyến
Do đó: ΔCHI cân tại C
=>CH=CI
mà CH=BK
nên BK=CI
Xét tứ giác BCKI có
BC//KI
BK=CI
Do đó: BCKI là hình thang cân
\(\dfrac{x+1}{2}\) = 1 - \(x\)
\(x+1\) = 2.(1 - \(x\))
\(x+1\) = 2 - 2\(x\)
2\(x\) + \(x\) = 2 - 1
3\(x\) = 1
\(x=\dfrac{1}{3}\)
Vậy \(x=\dfrac{1}{3}\)
2\(x+1\) ⋮ \(x-1\)
2(\(x-1\)) + 3 ⋮ \(x-1\)
3 ⋮ \(x-1\)
\(x-1\) \(\in\) Ư(3) = {-3; -1; 1; 3}
Lập bảng ta có:
\(x-1\) | -3 | -1 | 1 | 3 |
\(x\) | -2 | 0 | 2 | 4 |
Theo bảng trên ta có: \(x\in\) {-2; 0; 2; 4}
Vậy \(x\in\left\{-2;0;2;4\right\}\)
Gọi \(x\) (phần thưởng) là số phần thưởng nhiều nhất có thể chia \(\left(x\in N,x>0\right)\)
Do số phần thưởng được chia từ 105 quyển vở và 90 bút bi nên \(x=ƯCLN\left(105;90\right)\)
Ta có:
\(105=3.5.7\)
\(90=2.3^2.5\)
\(x=ƯCLN\left(105;90\right)=3.5=15\) (nhận)
Vậy số phần thưởng nhiều nhất có thể chia là 15 phần thưởng. Mỗi phần thưởng có:
\(105:15=7\) quyển vở
\(90:15=6\) bút bi
a) 9x²(2x - 3) = 0
9x² = 0 hoặc 2x - 3 = 0
*) 9x² = 0
x² = 0
x = 0
*) 2x - 3 = 0
2x = 3
Vậy:
b; (4\(x+2\))(\(x^2\) + 1) = 0
\(x^2\) ≥ 0 ⇒ \(x^2\) + 1 ≥ 1 ∀ \(x\)
⇒ 4\(x+2\) = 0 ⇒ 4\(x=-2\) ⇒ \(x=-\dfrac{1}{2}\)
Vậy \(x=-\dfrac{1}{2}\)