vẽ đoạn thẳng AB,tia AB; đường thẳng AB
b) vẻ đoạn thẳng CD xác định trung điểm I của đoạn thẳng CD
d)vẽ đoạn thẳng EF lấy điểm k sao cho bà điểm E,F,K thẳng hàng, lấy điểm M sao cho bà điểm E,F,M không thẳng hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2+2^2+...+2^{99}\\ 2A=2+2^2+2^3+...+2^{100}\\ 2A-A=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+...+2^{99}\right)\\ A=2^{100}-1\)
\(=>A+1=2^{100}-1+1=2^{100}\)
Mà: \(A+1=2^n=>2^n=2^{100}\)
\(=>n=100\)
Có :
9 - x = 15
x = 9 - 15
x = - 6
Mà -6 \(\notin\) N ⇒ D = { }
9 - x = 15
=> x = 9 - 15
=> x = -6
Mà x ∈ N => K có x thỏa mãn
=> D = ∅
\(170=17\cdot2\cdot5;290=29\cdot2\cdot5\)
=>\(BCNN\left(170;290\right)=17\cdot29\cdot2\cdot5=4930\)
\(a⋮170;a⋮290\)
=>\(a\in BC\left(170;290\right)\)
mà a nhỏ nhất
nên a=BCNN(170;290)
=>a=4930
Gọi số đó là: a
a chia 5 dư 3
=> a có chữ số tận cùng là 3 và 8
Mà a là số lớn nhất nhỏ hơn 200
=> a = 198
80 chia hết cho a
=> a ∈ Ư(80)
70 chia hết cho a
=> a ∈ Ư(70)
=> a ∈ ƯC(80; 70)
Mà a lớn nhất
=> a ∈ ƯLCN(80; 70)
Ta có:
\(80=2^4\cdot5\\ 70=2\cdot5\cdot7\\ =>a=ƯCLN\left(80;70\right)=2\cdot5=10\)
=> a = 10
\(\left(3x-2\right)^2=14-2\cdot5^2\)
=>\(\left(3x-2\right)^2=14-2\cdot25=14-50=-36\)
mà \(\left(3x-2\right)^2>=0\forall x\)
nên \(x\in\varnothing\)
\(\left(3x-2\right)^2=14-2.5^2\)
\(\Rightarrow\left(3x-2\right)^2=14-2.25\)
\(\Rightarrow\left(3x-2\right)^2=14-50\)
\(\Rightarrow\left(3x-2\right)^2=-36\)
Vì \(\left(3x-2\right)^2\ge0\) với mọi \(x\)
\(\Rightarrow x\in\left\{\varnothing\right\}\)
a: A=1-2-3+4+5-6-7+8+...+1997-1998-1999+2000
=(1-2-3+4)+(5-6-7+8)+...+(1997-1998-1999+2000)
=0+0+...+0=0
b: B=1+2-3-4+5+6-7-8+...+1997+1998-1999-2000
=(1+2-3-4)+(5+6-7-8)+...+(1997+1998-1999-2000)
=(-4)+(-4)+...+(-4)
\(=-4\cdot500=-2000\)
Gọi số cần tìm có dạng là \(\overline{ab}\)
Viết thêm chữ số 3 vào giữa hai chữ số thì số mới gấp 9 lần số phải tìm nên \(\overline{a3b}=9\cdot\overline{ab}\)
=>100a+30+b=9(10a+b)
=>100a+30+b-90a-9b=0
=>10a-8b+30=0
=>5a-4b=-15
=>a=1;b=5
Vậy: Số cần tìm là 15
\(A=\dfrac{1}{1\cdot5}+\dfrac{1}{5\cdot9}+\dfrac{1}{9\cdot13}+...+\dfrac{1}{33\cdot37}\\ =\dfrac{1}{4}\cdot\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{33\cdot37}\right)\\ =\dfrac{1}{4}\cdot\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{33}-\dfrac{1}{37}\right)\\ =\dfrac{1}{4}\cdot\left(1-\dfrac{1}{37}\right)\\ =\dfrac{1}{4}\cdot\dfrac{36}{37}\\ =\dfrac{9}{37}\)
\(A=\dfrac{1}{1\cdot5}+\dfrac{1}{5\cdot9}+...+\dfrac{1}{33\cdot37}\)
\(=\dfrac{1}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{33\cdot37}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{33}-\dfrac{1}{37}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{37}\right)=\dfrac{1}{4}\cdot\dfrac{36}{37}=\dfrac{9}{37}\)