CMR nếu (a-11b+3c) chia hết cho 17 thì (2a-5b+6c) chia hết cho 17 ( với a,b,c thuộc Z)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#3107.101107`
a)
\(49\cdot52+48\cdot132-48\cdot83\\ =49\cdot52+48\cdot\left(132-83\right)\\ =49\cdot52+48\cdot49\\ =49\cdot\left(52+48\right)\\ =49\cdot100\\ =4900\)
b)
\(42\cdot53+47\cdot186-114\cdot47\\ =42\cdot53+47\cdot\left(186-114\right)\\ =42\cdot53+47\cdot72\\ =2226+3384\\ =5610\)
thằng nào có tiền, thì nạp vào roblox donate cho ta. ít ,thì 5 robux. nhiều , thì 1k robux
Ta có:
5⁶⁰ⁿ = (5³)²⁰ⁿ = 125²⁰ⁿ
2¹⁴⁰ⁿ = (2⁷)²⁰ⁿ = 128²⁰ⁿ
3¹⁰⁰ⁿ = (3⁵)²⁰ⁿ = 243²⁰ⁿ
Do 125 < 128 < 243
125²⁰ⁿ < 128²⁰ⁿ < 243²⁰ⁿ
Vậy 5⁶⁰ⁿ < 2¹⁴⁰ⁿ < 3¹⁰⁰ⁿ
{50:5-45:5}x7
={10-9}x7
=1x7
=7
d,
=6^2x10:{780:[1000-15,625+35x14]}
=6^2x10:{780:[1000-15,625+490]}
=6^2x10:{780:1474,375}
=6^2x10:0,52903772785
=36x10:0,52903772785
=360:0,52903772785
=608,480769232
khum bt câu d, làm đúng chưa?
chắc sai á
a)211:{1026-[34+1]:41}
=211:{1026-82:41}
=211:211
=211-11=2
b) (35+13):44*(2022*2021-4082419)
=256:44*4043
=0*4043
=0
chú thích:
*=dấu nhân
3²ⁿ = (3²)ⁿ = 9ⁿ
2³ⁿ = (2³)ⁿ = 8ⁿ
Do 9 > 8 nên 9ⁿ > 8ⁿ
Vậy 3²ⁿ > 2³ⁿ
------------
5³⁶ = (5³)¹² = 125¹²
11²⁴ = (11²)¹² = 121¹²
Do 125 > 121 nên 125¹² > 121¹²
Vậy 5³⁶ > 11²⁴
`#3107.101107`
a)
\(3^{2n}\) và \(2^{3n}\)
Ta có:
\(3^{2n}=3^{2\cdot n}=\left(3^2\right)^n=9^n\\ 2^{3n}=2^{3\cdot n}=\left(2^3\right)^n=8^n\)
Vì \(9>8\Rightarrow9^n>8^n\Rightarrow3^{2n}>2^{3n}\)
Vậy, \(3^{2n}>2^{3n}\)
b)
\(5^{36}\) và \(11^{24}\)
Ta có:
\(5^{36}=5^{12\cdot3}=\left(5^3\right)^{12}=125^{12}\\ 11^{24}=11^{12\cdot2}=\left(11^2\right)^{12}=121^{12}\)
Vì \(125>121\Rightarrow125^{12}>121^{12}\Rightarrow5^{36}>11^{24}\)
Vậy, \(5^{36}>11^{24}.\)
\(\left(x-5\right)^{2022}=\left(x-5\right)^{2024}\\ \Rightarrow\left(x-5\right)^{2022}-\left(x-5\right)^{2024}=0\\ \Rightarrow\left(x-5\right)^{2022}\left[1-\left(x-5\right)^2\right]=0\\ \Rightarrow\left[{}\begin{matrix}\left(x-5\right)^{2022}=0\\1-\left(x-5\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\\left(x-5\right)^2=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=\left(\pm1\right)^2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=6\\x=4\end{matrix}\right.\)
`#3107.101107`
\(\left(x-5\right)^{2022}=\left(x-5\right)^{2024}\)
\(\Rightarrow\left(x-5\right)^{2022}-\left(x-5\right)^{2024}=0\\ \Rightarrow\left(x-5\right)^{2022}\cdot\left[1-\left(x-5\right)^2\right]=0\\ \Rightarrow\left[{}\begin{matrix}\left(x-5\right)^{2022}=0\\1-\left(x-5\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\\left(x-5\right)^2=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=\left(\pm1\right)^2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x-5=1\\x-5=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=6\\x=4\end{matrix}\right.\)
Vậy, \(x\in\left\{4;5;6\right\}.\)
`#3107.101107`
\(\dfrac{7^{40}\cdot5-7^{39}\cdot8}{7^{39}\cdot3^3}\)
\(=\dfrac{7^{39}\cdot\left(7\cdot5-8\right)}{7^{39}\cdot3^3}\\ =\dfrac{7\cdot5-8}{3^3}\\ =\dfrac{35-8}{27}\\ =\dfrac{27}{27}\\ =1\)
Lời giải:
$a-11b+3c\vdots 17$
$\Rightarrow 2(a-11b+3c)\vdots 17$
$\Rightarrow 2a-22b+6c\vdots 17$
$\Rightarrow 2a-5b+6c-17b\vdots 17$
$\Rightarrow 2a-5b+6c\vdots 17$ (đpcm)