Giúp mình giải phương trình này với:
((x-1)/(x-2) + (x+3)/(x-4) = 2/(x-2)(x-4).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2+x+13=y2<=>4(x2+x+13)=4y2<=>4x2+4x+52=4y2<=>(4x2+4x+1)+51=4y2
<=>(2x+1)2+51=(2y)2<=>(2y)2-(2x+1)2=51<=>(2y-2x-1)(2y+2x+1)=51
đến đây giải kiểu pt ước số
\(A=2x^2+y^2-2xy+4x+2y+5\)
\(A=\left(x^2+6x+9\right)+\left(y^2-2xy-2y+x^2-2x+1\right)-5\)
\(A=\left(x^2+6x+9\right)+\left[y^2-2y\left(x-1\right)+\left(x^2-2x+1\right)\right]-5\)
\(A=\left(x^2+6x+9\right)+\left[y^2-2y\left(x-1\right)+\left(x-1\right)^2\right]-5\)
\(A=\left(x+3\right)^2+\left(y-x+1\right)^2-5\ge-5\)
Dấu "=" xảy ra khi x=-3 và y=-4
\(A=2x^2+y^2-2xy+4x+2y+5\)
=> \(A=y^2-2y\left(x-1\right)+\left(x-1\right)^2-\left(x-1\right)^2+2x^2+4x+5\)
=> \(A=\left(y-x+1\right)^2-x^2+2x-1+2x^2+4x+5\)
=> \(A=\left(y-x+1\right)^2-x^2+6x+4\)
=> \(A=\left(y-x+1\right)^2-\left(x^2-2.x.3+9\right)+13\)
=> \(A=\left(y-x+1\right)^2-\left(x-3\right)^2+13\)
Có \(\left(y-x+1\right)^2\ge0\)
\(\left(x-3\right)^2\ge0\)
=> \(\left(y-x+1\right)^2-\left(x-3\right)^2+13\ge13\)
=> \(A\ge13\)
Vậy Amin = 13 <=> \(\hept{\begin{cases}y-x+1=0\\x-3=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
\(\frac{1}{2-3x}>\frac{2}{1+4x}\)
\(\Rightarrow1+4x>4-6x\)
\(\Rightarrow4x+6x>4-1\)
\(\Rightarrow10x>3\)
\(\Rightarrow x>\frac{3}{10}\)
Vì số chia là x2 - 1
Áp dụng định lý Bơ-zu ta có : Số dư của phép chia là :
\(F\left(1\right)=x+x+x+x+7=4x+7\)
Số dư của phép chia là 4x+7
\(\frac{x-1}{x-2}+\frac{x+3}{x-4}=\frac{2}{\left(x-2\right)\left(x-4\right)}\)
\(ĐKXĐ:x\ne2,x\ne4\)
\(MC:\left(x-2\right)\left(x-4\right)\)
\(PT\Leftrightarrow\left(x-1\right)\left(x-4\right)+\left(x+3\right)\left(x-2\right)=2\)
\(\Leftrightarrow x^2-5x+4+x^2+x-6=2\)
\(\Leftrightarrow2x^2-4x-4=0\)
\(\Leftrightarrow2\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow x^2-2x=2\)
\(\Leftrightarrow x\left(x-2\right)=2\)
\(\Leftrightarrow x\left(x-2\right)-2=0\)
Vậy giờ mình kết luận x=? hả bạn? Mình dở toán lắm. (T-T)