A={1,2,3}
A có mấy phần tử
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BCNN là bò con nho nhỏ (đùa thôi), BCNN là bội chung nhỏ nhất
Bg
98 = 2.72
72 = 23.32
BCNN (98; 72) = 23.32.72 = 3528
TA CÓ THỂ THẤY, VẾ TRÁI CÓ: 12 CẶP
=> \(12x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=11x+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)
<=> \(x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\) (****)
Ta xét: \(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\)
=> \(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{23.25}\)
=> \(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}\)
=> \(2A=1-\frac{1}{25}=\frac{24}{25}\)
=> \(A=\frac{12}{25}\)
Ta tiếp tục xét: \(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)
=> \(3B=1+\frac{1}{3}+...+\frac{1}{3^4}\)
=> \(3B-B=\left(1+\frac{1}{3}+...+\frac{1}{3^4}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\right)\)
=> \(2B=1-\frac{1}{3^5}=\frac{242}{243}\)
=> \(B=\frac{121}{243}\)
THAY CÁC GIÁ TRỊ A; B VÀO PT (****) TA ĐƯỢC:
=> \(x+\frac{12}{25}=\frac{121}{243}\)
<=> \(x=\frac{121}{243}-\frac{12}{25}=\frac{109}{6075}\)
a) n + 5 chia hết cho n - 2
=> ( n - 2 ) + 7 chia hết cho n - 2
=> 7 chia hết cho n - 2
=> n - 2 thuộc Ư(7) = { -7 ; -1 ; 1 ; 7 }
n-2 | -7 | -1 | 1 | 7 |
n | -5 | 1 | 3 | 10 |
Vậy n = { -5 ; 1 ; 3 ; 10 )
b) Gọi d là ƯCLN(7n + 10 ; 5n + 7)
\(\Rightarrow\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)
\(\Rightarrow\left(35n+50\right)-\left(35n+49\right)⋮d\)
\(\Rightarrow35n+50-35n-49⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
=> ƯCLN(7n + 10 ; 5n + 7) = 1
=> 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau với mọi n thuộc N ( đpcm )
Bài làm:
a) \(\frac{n+5}{n-2}=\frac{\left(n-2\right)+7}{n-2}=1+\frac{7}{n-2}\)
Để \(\left(n+5\right)⋮\left(n-2\right)\) thì \(\frac{7}{n-2}\inℤ\)
\(\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Leftrightarrow n\in\left\{-5;1;3;9\right\}\)
b) Gọi \(\left(7n+10;5n+7\right)=d\)
\(\Rightarrow\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2\left(7n+10\right)⋮d\\2\left(5n+7\right)⋮d\end{cases}}\)
\(\Rightarrow14n+20-\left(10n+14\right)⋮d\)
\(\Leftrightarrow4n+6⋮d\) , mà \(5n+7⋮d\)
\(\Rightarrow5n+7-\left(4n+6\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\pm1\)
=> 7n+10 và 5n+7 nguyên tố cùng nhau
=> đpcm
\(23< a< 30\Rightarrow a\in\left\{24;25;26;27;28;29\right\}\)
\(10< c< 26\Rightarrow c\in\left\{11;12;13;14;15;16;17;18;19;20;21;22;23;24;25\right\}\)
mà \(a< b\le c\)
\(\Rightarrow a< c\Rightarrow a=24\)
\(\Rightarrow a< b\Rightarrow b=25\)
\(\Rightarrow b\le c\Rightarrow c=25\)
\(\Rightarrow24< 25\le25\)
vậy a = 24; b = 25; c = 25
\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{100.100}\)
=> \(A< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)
=> \(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
=> \(A< 1-\frac{1}{100}\)
=> \(A< \frac{99}{100}< 1\)
=> \(A< 1\left(ĐPCM\right).\)
Ta có : \(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3};...;\frac{1}{100^2}=\frac{1}{100.100}< \frac{1}{99.100}\)
=> A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)(ĐPCM)
a có 3 phần tử
A có 3 phần tử là 1; 2; 3.