K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
23 tháng 6 2021

\(\sqrt{x^2-4x+4}-\sqrt{x^2+2x+1}=-3\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}-\sqrt{\left(x+1\right)^2}=-3\)

\(\Leftrightarrow\left|x-2\right|-\left|x+1\right|=-3\)(1)

Có: \(\left|x-2\right|-\left|x+1\right|=\left|x-2\right|-\left|x-2+3\right|\ge\left|x-2\right|-\left(\left|x-2\right|+3\right)=-3\)

Dấu \(=\)khi \(3\left(x-2\right)\ge0\Leftrightarrow x\ge2\).

Do đó nghiệm của (1) là \(x\ge2\).

Vậy nghiệm phương trình đã cho là \(x\ge2\).

23 tháng 6 2021

<=>\(\sqrt{\left(x-2\right)^2}\)-\(\sqrt{\left(x+1\right)^2}=-3\)

<=>\(|x-2|-|x+1|=-3\)(1)

nếu \(\hept{\begin{cases}x-2\ge0\\x+1\ge0\end{cases}=>\hept{\begin{cases}x\ge2\\x\ge-1\end{cases}=>x\ge}2}\)

(1)<=> x-2-x-1+3=0

<=>0x=0(đúng với mọi x)

=>x\(\in\left\{x|x\ge2\right\}\)

nếu \(\hept{\begin{cases}x-2< 0\\x+1< 0\end{cases}< =>\hept{\begin{cases}x< 2\\x< -1\end{cases}< =>x< -1}}\)

(1)<=>2-x+x+1+3=0

<=>0x=-3(vô lí)

vậyphương trình đã cho có tập nghiêm là \(x\in\left\{x|x\ge2\right\}\)

23 tháng 6 2021

\(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)

áp dụng bunhia - cốpxki

\(P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)

\(=6\left(a+b+c\right)\)

\(=6.2021=12126< =>P=\sqrt{12126}\)

vậy MAX P=\(\sqrt{12126}\)

24 tháng 6 2021

\(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)

\(\Rightarrow P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)

Áp dụng BĐT Bunyakovsky ta có:

\(P^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)=6\left(a+b+c\right)=6\cdot2021\)

\(\Rightarrow P\le\sqrt{6\cdot2021}=\sqrt{12126}\)

Dấu "=" xảy ra khi: \(a=b=c=\frac{2021}{3}\)

Vậy \(Max\left(P\right)=\sqrt{12126}\Leftrightarrow a=b=c=\frac{2021}{3}\)

23 tháng 6 2021

\(\sqrt{3}\cdot\sqrt{75}=\sqrt{3\cdot75}=\sqrt{225}=15\)   

\(\sqrt{72}\cdot\sqrt{18}=6\sqrt{2}\cdot3\sqrt{2}=18\cdot2=36\)   

\(\sqrt{2,5}\cdot\sqrt{30}\cdot\sqrt{48}=\sqrt{2,5\cdot30}\cdot\sqrt{48}=\sqrt{75}\cdot\sqrt{48}=5\sqrt{3}\cdot4\sqrt{3}=20\cdot3=60\)   

\(\sqrt{\frac{5}{49}}\cdot\sqrt{\frac{16}{125}}=\sqrt{\frac{5}{49}\cdot\frac{16}{125}}=\sqrt{\frac{16}{49\cdot25}}=\frac{4}{7\cdot5}=\frac{4}{35}\)

DD
23 tháng 6 2021

a) Xét tam giác \(BDC\)

\(\widehat{DBC}=180^o-\widehat{BDC}-\widehat{DCB}=180^o-30^o-60^o=90^o\)

Do đó tam giác \(BDC\)vuông tại \(B\).

Có \(\widehat{BDC}=30^o\)nên \(BC=\frac{1}{2}DC\Rightarrow AB=AC=\frac{1}{2}DC\Rightarrow DC=12\left(cm\right)\).

\(BC^2+BD^2=CD^2\)(định lí Pythagore) 

\(\Leftrightarrow BD^2=CD^2-BC^2=12^2-6^2=108\)

\(\Leftrightarrow BD=6\sqrt{3}\left(cm\right)\)

b) \(S_{ABD}=S_{DBC}-S_{ABC}=\frac{1}{2}.6.6\sqrt{3}-\frac{6^2\sqrt{3}}{4}=9\sqrt{3}\left(cm^2\right)\)

23 tháng 6 2021

\(a,ĐKXĐ:x\ge0;x\ne1\)

\(P=\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{1-\sqrt{x}}+\sqrt{x}\right)\left(\frac{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)

\(P=\left(1+\sqrt{x}+x+\sqrt{x}\right)\left(1-\sqrt{x}+x-\sqrt{x}\right)\)

\(P=\left(x+2\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)\)

\(P=\left(x+1\right)^2\left(x-1\right)^2\)

\(P=\left[\left(x+1\right)\left(x-1\right)\right]^2\)

\(P=\left(x^2+x-x-1\right)^2\)

\(P=\left(x^2-1\right)^2\)

b, \(7-4\sqrt{3}=2^2-4\sqrt{3}+\sqrt{3}\)

\(\left(2-\sqrt{3}\right)^2\)

\(P=\left(x^2-1\right)^2< \left(2-\sqrt{3}\right)^2\)

\(x^2-1< 2-\sqrt{3}\)

\(x^2< 3-\sqrt{3}\)

\(x< \sqrt{3-\sqrt{3}}\)

23 tháng 6 2021

a) ĐKXĐ: \(\hept{\begin{cases}x\ge0\\1-\sqrt{x}\ne0\\1+\sqrt{x}\ne0\end{cases}}\) <=> \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

Ta có: \(P=\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\left(\frac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)\)

\(P=\left(\frac{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}{1-\sqrt{x}}+\sqrt{x}\right)\left(\frac{\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{\left(1+\sqrt{x}\right)}-\sqrt{x}\right)\)

\(P=\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)^2=\left(x-1\right)^2\)

b) Với x > = 0 và x khác 1

Ta có: \(P< 7-4\sqrt{3}\)

<=> \(\left(x-1\right)^2< \left(2-\sqrt{3}\right)^2\)

<=> \(\left(x-1-2+\sqrt{3}\right)\left(x-1+2-\sqrt{3}\right)< 0\)

<=> \(\left(x-3+\sqrt{3}\right)\left(x+1-\sqrt{3}\right)< 0\)

<=> \(\hept{\begin{cases}x-3+\sqrt{3}< 0\\x+1-\sqrt{3}>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3+\sqrt{3}>0\\x+1-\sqrt{3}< 0\end{cases}}\)

<=> \(\hept{\begin{cases}x< 3-\sqrt{3}\\x>\sqrt{3}-1\end{cases}}\) hoặc \(\hept{\begin{cases}x>3-\sqrt{3}\\x< \sqrt{3}-1\end{cases}}\)

<=> \(\sqrt{3}-1< x< 3-\sqrt{3}\)

23 tháng 6 2021

\(ĐKXĐ:x\ge0;x\ne1;0\)

\(A=\frac{2x+2}{\sqrt{x}}+\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(A=\frac{2x+2}{\sqrt{x}}+\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\)

\(A=\frac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)

\(A=\frac{2x+2+2\sqrt{x}}{\sqrt{x}}\)

\(A=2\sqrt{x}+\frac{2}{\sqrt{x}}+2\)

a/d bđt cauchy 

\(2\sqrt{x}+\frac{2}{\sqrt{x}}\ge2\sqrt{2.2}=2.2=4\)

\(A\ge4+2=6\)

\(< =>A>5\)

dấu "=" xảy ra khi x=1

23 tháng 6 2021

a, \(B=\left(\frac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}\right)\frac{\sqrt{a}+1}{\sqrt{a}}\)ĐKXĐ : \(a>0;a\ne1\)

\(=\left(\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\right)\frac{\sqrt{a}+1}{\sqrt{a}}\)

\(=\left(\frac{a+\sqrt{a}-2-a+\sqrt{a}+2}{a-1}\right)\frac{1}{\sqrt{a}}\)

\(=\frac{2\sqrt{a}}{\left(a-1\right)\sqrt{a}}=\frac{2}{a-1}\)

b, quá rõ ràng rồi nhé 

a) ĐKXĐ:x>0

A=x2+xx−x+1−2x+xx+1

⇔A=x(x+1)(x−x+1)x−x+1−x(2x+1)x+1

⇔A=x+x−2x−1+1

⇔A=x−x

b) Để A = 0

⇔x−x=0

⇔x(x−1)=0

⇔[x=0x=1

⇔[x=0(ktm)x=1(tm)

vậy ...

DD
23 tháng 6 2021

\(2021n-19\equiv21n+21\left(mod40\right)\)suy ra ta cần chứng minh \(n+1⋮40\)(vì \(\left(21,40\right)=1\)).

Đặt \(m=n+1\). Ta sẽ chứng minh \(m⋮40\).

Đặt \(2m+1=a^2,3m+1=b^2\).

\(2m+1\)là số lẻ nên \(a\)là số lẻ suy ra \(a=2k+1\).

\(2m+1=\left(2k+1\right)^2=4k^2+4k+1\Rightarrow m=2\left(k^2+k\right)\)nên \(m\)chẵn. 

do đó \(3m+1\)lẻ nên \(b\)lẻ suy ra \(b=2l+1\).

\(3m+1=4l^2+4l+1\Leftrightarrow3m=4l\left(l+1\right)\)có \(l\left(l+1\right)\)là tích hai số nguyên liên tiếp nên chia hết cho \(2\)do đó \(4l\left(l+1\right)\)chia hết cho \(8\)suy ra \(m⋮8\)vì \(\left(3,8\right)=1\).

Giờ ta sẽ chứng minh \(m⋮5\).

Nếu \(m=5p+1\)\(2m+1=10p+3\)có chữ số tận cùng là \(3\)nên không là số chính phương.

Nếu \(m=5p+2\)\(3m+1=15m+7\)có chữ số tận cùng là \(7\)nên không là số chính phương. 

Nếu \(m=5p+3\)\(2m+1=10m+7\)có chữ số tận cùng là \(7\)nên không là số chính phương. 

Nếu \(m=5p+4\)\(3m+1=15m+13\)có chữ số tận cùng là \(3\)nên không là số chính phương. 

Do đó \(m=5p\Rightarrow m⋮5\).

Có \(m⋮8,m⋮5\)mà \(\left(5,8\right)=1\)suy ra \(m⋮\left(5.8\right)\Leftrightarrow m⋮40\).

Ta có đpcm. 

24 tháng 6 2021

méo biêt

23 tháng 6 2021

x( x + y )2 - y + 1 = 0

<=> x( x2 + 2xy + y2 ) - y + 1 = 0

<=> x3 + 2x2y + xy2 - y + 1 = 0

<=> xy2 + ( 2x2 - 1 )y + x3 + 1 = 0 (*)

Coi (*) là phương trình bậc 2 ẩn y , x là tham số 

(*) có nghiệm <=> Δ ≥ 0 <=> ( 2x2 - 1 )2 - 4x( x3 + 1 ) ≥ 0

<=> 4x4 - 4x2 + 1 - 4x4 - 4x ≥  0

<=> -4x2 - 4x + 1 ≥ 0

<=> \(\frac{-1-\sqrt{2}}{2}\le x\le\frac{-1+\sqrt{2}}{2}\)

Vì x nguyên => x ∈ { -1 ; 0 } 

+) Với x = -1 (*) trở thành -y2 + y = 0 <=> y( 1 - y ) = 0 <=> y = 0 (tm) hoặc y = 1 (tm)

+) Với x = 0 (*) trở thành -y + 1 = 0 <=> y = 1 (tm)

Vậy ( x ; y ) = { ( -1 ; 0 ) , ( -1 ; 1 ) , ( 0 ; 1 ) }

23 tháng 6 2021

cậu ơi có thể giải bài này mà ko dùng denta đc ko ?

23 tháng 6 2021

sửa lại đề\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{6+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)

\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{6+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)

\(\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}+\frac{2\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}\)

\(\sqrt{3}+2\sqrt{3}=3\sqrt{3}\)

23 tháng 6 2021

đề là dấu trừ mà