6*x^3 -7*x^2 + 2 : 2*x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/b là phân thức tối giản nên suy ra a ko chia hết cho b
a/a+b ta có a chia hết cho a mak a ko chia hết cho b nên a chia hết cho a+b
suy ra a/a+b là phân thức tối giản
a)\(\frac{2-x}{2007}-1=\frac{1-x}{2008}-\frac{x}{2009}\)
\(\Leftrightarrow\frac{2-x}{2007}-1+2=\frac{1-x}{2008}+1-\frac{x}{2009}+1\)
\(\Leftrightarrow\frac{2-x}{2007}+\frac{2007}{2007}=\frac{1-x}{2008}+\frac{2008}{2008}-\frac{x}{2009}+\frac{2009}{2009}\)
\(\Leftrightarrow\frac{2009-x}{2007}=\frac{2009-x}{2008}-\frac{2009-x}{2009}\)
\(\Leftrightarrow\frac{2009-x}{2007}-\frac{2009-x}{2008}+\frac{2009-x}{2009}=0\)
\(\Leftrightarrow\left(2009-x\right)\left(\frac{1}{2007}-\frac{1}{2008}+\frac{1}{2009}\right)=0\)
\(\Leftrightarrow2009-x=0\).Do \(\frac{1}{2007}-\frac{1}{2008}+\frac{1}{2009}\ne0\)
\(\Leftrightarrow x=2009\)
b)\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)
\(\Leftrightarrow\left(12^2x^2+2\cdot12\cdot7x+7^2\right)\left(6x^2+7x+2\right)-3=0\)
\(\Leftrightarrow\left[24\left(6x^2+7x+2\right)+1\right]\left(6x^2+7x+2\right)-3=0\)
Đặt \(t=6x^2+7x+2\) ta có:
\(\left(24t+1\right)t-3=0\)\(\Leftrightarrow12t^2+t-3=0\)
Suy ra t rồi tìm đc x
Từ \(2\left(a^2+b^2\right)=5ab\)\(\Rightarrow2a^2+2b^2-5ab=0\)
\(\Rightarrow2b^2-ab-4ab+2a^2=0\)
\(\Rightarrow b\left(2b-a\right)-2a\left(2b-a\right)=0\)
\(\Rightarrow\left(b-2a\right)\left(2b-a\right)=0\)
\(\Rightarrow\orbr{\begin{cases}b-2a=0\\2b-a=0\end{cases}}\Rightarrow\orbr{\begin{cases}b=2a\\a=2b\end{cases}}\Rightarrow\orbr{\begin{cases}a=\frac{b}{2}\\b=\frac{a}{2}\end{cases}}\)
a)Ta có:
\(x^5+x^2=x^5-x^4+x^3+x^4-x^3+x^2\)
\(=x^2\left(x^3-x^2+x\right)+x\left(x^3-x^2+x\right)\)
\(=\left(x^2+x\right)\left(x^3-x^2+x\right)\)
Thay vào A ta có:\(A=\frac{x^5+x^2}{x^3-x^2+x}=\frac{\left(x^2+x\right)\left(x^3-x^2+x\right)}{x^3-x^2+x}=x^2+x\)
b)\(A-\left|A\right|=0\Leftrightarrow x^2+x-\left|x^2+x\right|=0\)
\(\left|x^2+x\right|=x^2+x\)\(\Leftrightarrow\orbr{\begin{cases}x^2+x=x^2+x\\x^2+x=-x^2-x\end{cases}}\)
giải tiếp chắc dễ
c)\(A=x^2+x\)\(=x^2-x+\frac{1}{4}-\frac{1}{4}\)
\(=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Dấu = khi \(\left(x+\frac{1}{2}\right)^2=0\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy MinA=\(-\frac{1}{4}\Leftrightarrow x=-\frac{1}{2}\)