Tìm dư khi chia x7+x5+x3+1 cho x2-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của vuighe123_oribe - Toán lớp 8 - Học toán với OnlineMath
x khac +-3
A=\(\hept{\begin{cases}\\\end{cases}\frac{xI\left(x-3\right)I}{5x^2-45}=\frac{xI\left(x-3\right)I}{5\left(x^2-3^2\right)}}\)
\(\frac{xIx-3I\overline{ }}{5\left(x-3\right)\left(x+3\right)^{ }_{ }}\)
x>3 A=\(\frac{x}{5\left(x+3\right)}\)
x<3 A=-\(\frac{x}{5\left(x+3\right)}\)
\(=\left(x^2+8x+15\right)\left(x^2+8x+7\right)+15\)
đặt:\(^{x^2+8x+11=t}\)
ta co \(\left(t+4\right)\left(t-4\right)+15=t^2-16+15=t^2-1\)
\(=\left(t-1\right)\left(t+1\right)\Rightarrow\left(x^2+8x+11-1\right)\left(x^2+8x+11+1\right)\)
\(\Rightarrow\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
Gọi O là giao điểm của AC và BD.
Ta có \(S_{ABCD}=S_{OAB}+S_{OBC}+S_{OCD}+S_{ODA}=200\)
Mặt khác, ta có : \(S_{OAB}\le\frac{1}{2}OA.OB\) , \(S_{OBC}\le\frac{1}{2}OB.OC\) , \(S_{OCD}\le\frac{1}{2}OC.OD\) , \(S_{OAD}\le\frac{1}{2}OA.OD\)
Suy ra \(S_{ABCD}\le\frac{1}{2}\left(OA.OB+OB.OC+OC.OD+OD.OA\right)\)
\(=\frac{1}{2}\left[OA.\left(OB+OD\right)+OC.\left(OB+OD\right)\right]=\frac{1}{2}AC.BD\)
\(\le\frac{1}{2}BD^2\)
Hay : \(BD^2\ge2S_{ABCD}\Leftrightarrow BD^2\ge400\Leftrightarrow BD\ge20\)
Vậy giá trị nhỏ nhất của đường chéo BD bằng 20 khi \(\hept{\begin{cases}BD=AC\\BD\perp AC\end{cases}}\)