Cho hai đa thức với hệ số nguyên f1(x), f2(x) thỏa mãn f(x)= f1(x3) + x.f2(x3) chia hết cho x2+x+1. Chứng minh rằng ƯCLN(f1(2017),f2(2017)) lớn hơn hoặc bằng 2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải :
Gọi K là giao điểm của MP và NQ
Kẽ MH, QE lần lược vuông góc với DC, BC tại H,E. I, F là giao điểm của QE với MP và MH
Ta có QE //DC
=> MIQ = MPH (góc đồng vị)
MIQ = QNE ( + NQE = 90)
=> MPH = QNE (1)
Xét tam giác QNE và tam giác MPH có
Góc MPH = góc QNE
Góc MHP = góc QEN = 90
MH = QE (cùng bằng cạnh hình vuông)
=> Tam giác QNE = tam giác MPH
=> NQ = PM
Đặt \(A=\frac{x^2+x+1}{x^2+2x+1}=\frac{x^2+x+1}{\left(x+1\right)^2}\)
Đặt \(t=x+1\Rightarrow x=t-1\) thay vào A được :
\(\frac{\left(t-1\right)^2+\left(t-1\right)+1}{t^2}=\frac{t^2-t+1}{t^2}=\frac{1}{t^2}-\frac{1}{t}+1\)
Lại đặt \(y=\frac{1}{t}\) thì ta có \(A=y^2-y+1=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Đẳng thức xảy ra khi y = 1/2 <=> t = 2 <=> x = 1
Vậy min A = 3/4 khi x = 1
Cái đề này không bị sai đâu ,tôi đã từng làm nhưng rất tiếc là quên mất rồi
\(B=3x^2-5x+7=3\left(x-\frac{5}{6}\right)^2+\frac{59}{12}\ge\frac{59}{12}\)
\(C=x^2-4x+3+11=\left(x^2-4x+4\right)+10=\left(x-2\right)^2+10\ge10\)
\(D=-x^2-4x-y^2+2y=-\left(x^2-4x+4\right)-\left(y^2-2y+1\right)+5=-\left[\left(x-2\right)^2+\left(y-1\right)^2\right]+5\le5\)
DM may
sao, next