K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2024

\(360=2^3\cdot3^2\cdot5;420=2^2\cdot3\cdot5\cdot7\)

=>\(BCNN\left(360;420\right)=2^3\cdot3^2\cdot5\cdot7=2520\)

Vì vận động viên thứ nhất chạy một vòng hết 360 giây, vận động viên thứ hai chạy một vòng hết 420 giây nên sau ít nhất là BCNN(360;420)=2520 giây thì hai VĐV này mới lại gặp nhau

=>Sau ít nhất là 2520 giây=42 phút thì hai người mới gặp lại nhau

12 tháng 11 2024

sau 42 phút

 

13 tháng 11 2024

Ta có \(\sqrt{2+2\cos2x}=\sqrt{2+2\left(2\cos^2x-1\right)}=\sqrt{4\cos^2x}=2\left|\cos x\right|\)

\(\Leftrightarrow f\left(x\right)+f\left(-x\right)=2\left|\cos x\right|,\forall x\inℝ\)  (1)

Đặt \(g\left(x\right)=f\left(x\right)-\left|\cos x\right|\)

Khi đó (1) \(\Leftrightarrow\left[f\left(x\right)-\left|\cos x\right|\right]+\left[f\left(-x\right)-\left|\cos x\right|\right]=0\)

\(\Leftrightarrow g\left(x\right)+\left[f\left(-x\right)-\left|\cos\left(-x\right)\right|\right]=0\) (do \(\cos x\) là hàm chẵn)

\(\Leftrightarrow g\left(x\right)+g\left(-x\right)=0\)

\(\Leftrightarrow g\left(x\right)=-g\left(-x\right)\)

\(\Leftrightarrow g\left(x\right)\) là hàm lẻ

Khi đó \(f\left(x\right)=g\left(x\right)+\left|\cos x\right|\) với \(g\left(x\right)\) là hàm lẻ. Thử lại, ta thấy:

(1) \(\Leftrightarrow f\left(x\right)+f\left(-x\right)=g\left(x\right)+\left|\cos x\right|+g\left(-x\right)+\left|\cos\left(-x\right)\right|\)

\(\Leftrightarrow f\left(x\right)+f\left(-x\right)=2\left|\cos x\right|\), thỏa mãn

 Vậy \(f\left(x\right)=g\left(x\right)+\left|\cos x\right|\) với \(g\left(x\right)\) là hàm lẻ bất kì có tập xác định là \(ℝ\)

 \(\Rightarrow I=\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}f\left(x\right)dx\)

 \(I=\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}\left[g\left(x\right)+\left|\cos x\right|\right]dx\)

\(I=\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}g\left(x\right)dx+\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}\left|\cos x\right|dx\)

\(I=\int\limits^{\dfrac{3\pi}{2}}_{-\dfrac{3\pi}{2}}\left|\cos x\right|dx\) (do \(g\left(x\right)\) là hàm lẻ)

\(I=\int\limits^{-\dfrac{\pi}{2}}_{-\dfrac{3\pi}{2}}\left(-\cos x\right)dx+\int\limits^{\dfrac{\pi}{2}}_{-\dfrac{\pi}{2}}\cos xdx+\int\limits^{\dfrac{3\pi}{2}}_{\dfrac{\pi}{2}}\left(-\cos x\right)dx\)

\(I=-\sin x|^{-\dfrac{\pi}{2}}_{-\dfrac{3\pi}{2}}+\sin x|^{\dfrac{\pi}{2}}_{-\dfrac{\pi}{2}}-\sin x|^{\dfrac{3\pi}{2}}_{\dfrac{\pi}{2}}\)

\(I=6\)

 

 

12 tháng 11 2024

                              Giải:

Các số thập phân lớn hơn 24,5 và nhỏ hơn 25,2 mà chỉ có một chữ số ở phần thập phân là các số thuộc dãy số sau:

                   24,6; 24,7; 24,8;...; 25,1

Dãy số trên là dãy số cách đều với khoảng cách là:

                  24,7 - 24,6 = 0,1

Số số hạng của dãy số trên là: (25,1 - 24,6) : 0,1 + 1 = 6

Vậy có tất cả 6 số lớn hơn 24,5 và nhỏ hơn 25,2 là 6 số. 

         

                

 

                   

12 tháng 11 2024

 

Các số thập phân lớn hơn 24,5 và nhỏ hơn 25,2 mà có 2 chữ số ở phần thập phân là:

24,51;24,52;...;25,19

Số số thập phân thỏa mãn là:

(25,19-24,51):0,01+1=69(số)

12 tháng 11 2024

a: 12m23dm=14,3m

b: 3 tấn 123 yến=4,23 tấn

3km234m=3,234km

2kg3562g=5,562kg

12 tháng 11 2024

dạng ƯC ;ƯCLN;BC;BCNN

11 tháng 11 2024

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC=\sqrt{4^2-2^2}=2\sqrt{3}\left(cm\right)\)

Xét ΔABC vuông tại A có \(cosB=\dfrac{BA}{BC}=\dfrac{1}{2}\)

nên \(\widehat{B}=60^0\)

12 tháng 11 2024

a: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

=>B,E,D,C cùng thuộc một đường tròn

b: Xét (B;BD) có

BD là bán kính

AC\(\perp\)BD tại D

Do đó: AC là tiếp tuyến của (B;BD)

12 tháng 11 2024

A = 2022 x 98,76 + 2023 x 1,24  - 2,48 : 2

A =  2022 x 98,76 + (2022 + 1) x 1,24 - 1,24

A = 2022 x 98,76 + 2022 x 1,24 + 1,24 - 1,24

A = 2022 x (98,76 + 1,24)  + (1,24 - 1,24)

A = 2022 x 100 + 0

A = 202200

11 tháng 11 2024

a: Xét (O) có

\(\widehat{ABC};\widehat{ADC}\) là các góc nội tiếp chắn cung AC

nên \(\widehat{ABC}=\widehat{ADC}\)

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

Xét ΔAHB vuông tại H và ΔACD vuông tại C có

\(\widehat{ABH}=\widehat{ADC}\)

Do đó: ΔAHB~ΔACD

b: ΔAHB~ΔACD

=>\(\dfrac{AH}{AC}=\dfrac{AB}{AD}\)

=>\(AD=\dfrac{AB\cdot AC}{AH}=\dfrac{8\cdot15}{5}=8\cdot3=24\left(cm\right)\)

Bán kính của (O) là 24:2=12(cm)

11 tháng 11 2024

a: Xét (O) có \(\widehat{BAC}\) là góc nội tiếp chắn cung BC

nên \(\widehat{BAC}=\dfrac{1}{2}\cdot\widehat{BOC}\)

Xét ΔOBC có OB=OC

nên ΔOBC cân tại O

=>\(\widehat{OBC}=\dfrac{180^0-\widehat{BOC}}{2}=90^0-\widehat{BAC}\)

b: H là trực tâm của ΔABC

=>AH\(\perp\)BC

=>\(\widehat{BAH}=90^0-\widehat{ABC}\left(1\right)\)

Xét ΔOAC có OA=OC

nên ΔOAC cân tại O

=>\(\widehat{OAC}=\dfrac{180^0-\widehat{AOC}}{2}=90^0-\dfrac{1}{2}\cdot\widehat{AOC}=90^0-\widehat{ABC}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{BAH}=\widehat{OAC}\)