Cho tổng A= 32+64+28+ \(x\) với ∈ \(N\) . Tìm \(x\) để
a. A chia hết cho 2
b. A không chia hết cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tổng A= 32+64+28+ \(x\) với ∈ \(N\) . Tìm \(x\) để
a. A chia hết cho 2
b. A không chia hết cho 2
a: \(x\in B\left(9\right)\)
=>\(x\in\left\{0;9;18;27;36;45;54;63;72;...\right\}\)
mà 25<=x<=64
nên \(x\in\left\{27;36;45;54;63\right\}\)
b: \(x\inƯ\left(18\right)\)
=>\(x\in\left\{1;2;3;6;9;18\right\}\)
mà x>3
nên \(x\in\left\{6;9;18\right\}\)
c: \(x⋮8\)
=>\(x\in\left\{0;8;16;24;32;40;...\right\}\)
mà x<35
nên \(x\in\left\{0;8;16;24;32\right\}\)
d: \(60⋮x\)
=>\(x\in\left\{1;2;3;4;5;6;10;12;15;20;30;60\right\}\)
mà x>5
nên \(x\in\left\{6;10;12;15;20;30;60\right\}\)
a; 35 + 49 + 210
Vì 35 \(⋮\) 7
49 \(⋮\) 7
210 ⋮ 7
Vậy A = 35 + 49 + 210 ⋮ 7 (tính chất chia hết của một tổng)
b; B= 560 - 18 + 3 = 560 - 14 - (4 - 3)
560 \(⋮\) 7
- 14 ⋮ 7
- (4 - 3) = -1 không chia hết 7
⇒ B = 560 - 18 + 3 không chia hết cho 7
a: Trên tia Oa, ta có: OM<ON
nên M nằm giữa O và N
=>OM+MN=ON
=>MN+3=5
=>MN=2(cm)
b: Trên tia Oa, ta có: ON<OP
nên N nằm giữa O và P
=>ON+NP=OP
=>NP+5=7
=>NP=2(cm)
Trên tia Oa, ta có: OM<OP
nên M nằm giữa O và P
=>OM+MP=OP
=>MP+3=7
=>MP=4(cm)
Vì MN+NP=MP
nên N nằm giữa M và P
Ta có: N nằm giữa M và P
mà NM=NP(=2cm)
nên N là trung điểm của MP
c: Vì O là trung điểm của MQ
nên \(MQ=2\cdot MO=2\cdot3=6\left(cm\right)\)
MQ=6cm
ON=5cm
Do đó: MQ>ON
a: M nằm giữa A và B
=>MA+MB=AB
=>MB=10-4=6(cm)
AM=4cm; AB=10cm
mà 4cm<10cm
nên AM<AB
b: I là trung điểm của AM
=>\(MI=\dfrac{MA}{2}=\dfrac{4}{2}=2\left(cm\right)\)
K là trung điểm của BM
=>\(MK=\dfrac{MB}{2}=\dfrac{6}{2}=3\left(cm\right)\)
IK=IM+MK=2+3=5(cm)
Bài 2:
a: \(27^{11}=\left(3^3\right)^{11}=3^{33};81^8=\left(3^4\right)^8=3^{32}\)
mà 33>32
nên \(27^{11}>81^8\)
b: \(625^5=\left(5^4\right)^5=5^{20};125^7=\left(5^3\right)^7=5^{21}\)
mà 20<21
nên \(625^5< 125^7\)
c: \(3^{2n}=\left(3^2\right)^n=9^n;2^{3n}=\left(2^3\right)^n=8^n\)
mà 9>8
nên \(3^{2n}>2^{3n}\)
Bài 3:
a: \(3^{1234}=\left(3^2\right)^{617}=9^{617};2^{1851}=\left(2^3\right)^{617}=8^{617}\)
mà 9>8
nên \(3^{1234}>2^{1851}\)
b: \(6^{30}=\left(6^2\right)^{15}=36^{15}>12^{15}\)
c: \(5^{36}=\left(5^3\right)^{12}=125^{12};11^{24}=\left(11^2\right)^{12}=121^{12}\)
mà 125>121
nên \(5^{36}>11^{24}\)
d: \(6^3=6\cdot6^2< 7\cdot6^2\)
\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)
a;A = 32 + 64 + 28 + \(x\) ⋮ 2 ⇔ \(x\) ⋮ 2
⇒ \(x\) = 2k (k \(\in\) N)
b; A = 32 + 64 + 28 + \(x\) không chia hết cho 2
⇔ \(x\) không chia hết cho 2
⇒\(x=\)2k + 1