K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2021

Bài 5 : 

9, \(\frac{3-\sqrt{3}}{3\sqrt{3}}=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{3\sqrt{3}}=\frac{\sqrt{3}-1}{3}\)

10, \(\frac{2\sqrt{3}-\sqrt{6}}{5\sqrt{3}}=\frac{\sqrt{3}\left(2-\sqrt{2}\right)}{5\sqrt{3}}=\frac{2-\sqrt{2}}{5}\)

13, \(\frac{5-2\sqrt{5}}{-\left(\sqrt{5}-2\right)}=\frac{\sqrt{5}\left(\sqrt{5}-2\right)}{-\left(\sqrt{5}-2\right)}=-\sqrt{5}\)

14, \(\frac{4\sqrt{13}-13}{\sqrt{13}-4}=\frac{\sqrt{13}\left(4-\sqrt{13}\right)}{-\left(4-\sqrt{13}\right)}=-\sqrt{13}\)

17, \(\frac{5\sqrt{6}-6\sqrt{5}}{\sqrt{6}-\sqrt{5}}=\frac{\sqrt{30}\left(\sqrt{5}-\sqrt{6}\right)}{-\left(\sqrt{5}-\sqrt{6}\right)}=-\sqrt{30}\)

18, \(\frac{2\sqrt{5}-5\sqrt{2}}{\sqrt{10}}=\frac{\sqrt{10}\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{10}}=\sqrt{2}-\sqrt{5}\)

24 tháng 8 2021

Bài 1 : 

10, \(3\sqrt{2}-6=3\left(\sqrt{2}-2\right)\)

13, \(5\sqrt{3}+3\sqrt{5}-\sqrt{15}=\sqrt{15}\left(\sqrt{5}+\sqrt{3}-1\right)\)

11, \(12\sqrt{10}-16\sqrt{4}=12\sqrt{10}-32=4\left(3\sqrt{10}-8\right)\)

14, \(\sqrt{a}\sqrt{a}+\sqrt{a}=\sqrt{a}\left(\sqrt{a}+1\right)\)ĐK : x >= 0 

16, \(ab^2-2\sqrt{a}b-ab=\sqrt{a}b\left(\sqrt{a}b-2-\sqrt{a}\right)\)ĐK : x >= 0 

17, \(a\sqrt{a}-2b\sqrt{a}=\sqrt{a}\left(a-2b\right)\)ĐK : x >= 0 

24 tháng 8 2021

\(\sqrt{14+6\sqrt{5}}+\sqrt{14-6\sqrt{5}}\)

\(=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}\)

\(=|3+\sqrt{5}|+|3-\sqrt{5}|\)

\(=3+\sqrt{5}+3-\sqrt{5}\)

\(=6\)

24 tháng 8 2021

ko biết

24 tháng 8 2021

câu1: theo công thức ta có:

AH^2=HB*HC

        =25*64=1600

=>AH=40

=>tanB=AH/BH=40/25

                        =8/5

=>gócB=58 độ

=>gócC=90-58=32 độ

24 tháng 8 2021

Giả sử hình thang cân ABCD có AB = 12cm, CD = 18cm, ˆD=75∘

Kẻ AH⊥CD,BK⊥CD

Vì tứ giác ABKH là hình chữ nhật nên: AB = HK = 12 (cm)

Ta có: tam giác ADH = tam giác BCK (cạnh huyền, góc nhọn)

Suy ra: DH = CK

Suy ra: 

DH=(CD–HK) / 2=(18–12 ) /2=3(cm)

Trong tam giác vuông ADH, ta có:

AH=DH.tgD=3.tg75∘≈11,196(cm)

Vậy:

SABCD=[ (AB+CD) / 2 ] *AH  ≈ [ (12+18) / 2 ] *11,196=167,94

24 tháng 8 2021

b, ĐK : x > 0; x khác 4

\(\left(\frac{1}{\sqrt{x}+2}+\frac{1}{\sqrt{x}-2}\right)\cdot\frac{\sqrt{x}+2}{\sqrt{x}}\)

\(=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\cdot\frac{\sqrt{x}+2}{\sqrt{x}}\)

\(=\frac{2\sqrt{x}}{\left(\sqrt{x+2}\right)\left(\sqrt{x}-2\right)}\cdot\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{2}{\sqrt{x}-2}\)

Đặt \(t=\sqrt{\left(x^2+3\right)}\)

\(\Rightarrow t^2=x^2+3\)

\(\Rightarrow\)Phương trình trở thành 

\(7t^2-\left(11x-1\right)t-5\left(x+3\right)=0\)

Delta = \(\left(11x-1\right)+4.7.5\left(x+3\right)>0\forall x\)

'-' Đến đây bạn tìm nghiệm t theo ẩn x sau đó thay \(t=\sqrt{\left(x^2+3\right)}\)để tìm ra đáp án nhé !

24 tháng 8 2021

Đk x>=0   

A=\(\frac{2\sqrt{x}}{\sqrt{x}+3}\)=\(\frac{2\sqrt{x}+6-6}{\sqrt{x}+3}\)=\(\frac{2\left(\sqrt{x}+3\right)-6}{\sqrt{x}+3}\)=\(2-\frac{6}{\sqrt{x}+3}\)

Để A nguyên thì \(\frac{6}{\sqrt{x}+3}\)nguyên 

=> 6\(⋮\)\(\sqrt{x}+3\)=>\(\sqrt{x}+3\in\left\{1;2;3;6\right\}\)=>\(\sqrt{x}\in\left\{0;3\right\}\)vì \(\sqrt{x}\ge0\)

vậy x\(\in\left\{0;9\right\}\)

24 tháng 8 2021

\(ĐK:x\ge0\)

\(A=\frac{2\sqrt{x}}{\sqrt{x}+3}=\frac{2\sqrt{x}+6-6}{\sqrt{x}+3}=\frac{2\left(\sqrt{x}+3\right)-6}{\sqrt{x}+3}=2-\frac{6}{\sqrt{x}+3}\)

Để A nguyên thì \(\frac{6}{\sqrt{x}+3}\inℤ\Leftrightarrow\sqrt{x}+3\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

lập bảng xét nốt nhé:)

DD
25 tháng 8 2021

\(\hept{\begin{cases}2x^2+3xy-3y^2=-1\\4x^2-xy=18\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}36x^2+54xy-54y^2=-18\\4x^2-xy=18\end{cases}}\)

\(\Rightarrow40x^2+53xy-54y^2=0\)

\(\Leftrightarrow\left(40x-27y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}40x=27y\\x=2y\end{cases}}\)

Từ đây bạn rút thế vào một trong hai phương trình ban đầu giải ra nghiệm. 

a, \(M=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\left(ĐK:x\ge0,x\ne1\right)\)

\(=\frac{x+2+\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{x\sqrt{x}-1}\)

\(=\frac{x-\sqrt{x}}{x\sqrt{x}-1}\)

\(=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

b, Thay x = 25 ta tìm được \(M=\frac{5}{31}\)

c, Xét \(M-\frac{1}{3}=\frac{-x+2\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}=\frac{-\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\)

Vậy \(M< \frac{1}{3}\)

d, \(\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{2}{7}\)Bạn giải PT rồi tìm ra x nhé

e, Do \(0< M< 1\)nên \(M^2< M\)