2. Trong mặt phẳng Oxy, cho parabol (P): y = x ^ 2 và đường thẳng (d); y = 2(m - 2) * x - m ^ 2 + 4m + 5
a) Chứng minh đường thẳng (d) luôn cất parabol (P) tại 2 điểm phân biệt với mọi m. b) Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x, x, thỏa mãn: sqrt(x_{1}) = x_{2} + 6
a: Phương trình hoành độ giao điểm là:
\(x^2=2\left(m-2\right)x-m^2+4m+5\)
=>\(x^2-\left(2m-4\right)x+m^2-4m-5=0\)(1)
\(\Delta=\left[-\left(2m-4\right)\right]^2-4\cdot1\cdot\left(m^2-4m-5\right)\)
\(=4m^2-16m+16-4m^2+16m+20=36\)>0
=>(P) luôn cắt (d) tại hai điểm phân biệt
b: Vì \(\Delta=36\)
nên phương trình (1) luôn có 2 nghiệm phân biệt là:
\(\left[{}\begin{matrix}x=\dfrac{2m-4+\sqrt{36}}{2}=\dfrac{2m-4+6}{2}=\dfrac{2m+2}{2}=m+1\\x=\dfrac{2m-4-6}{2}=\dfrac{2m-10}{2}=m-5\end{matrix}\right.\)
\(\sqrt{x_1}=x_2+6\)
=>\(\left[{}\begin{matrix}\sqrt{m+1}=m-5+6\\\sqrt{m-5}=m+1+6\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\sqrt{m+1}=m+1\\\sqrt{m-5}=m+7\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}m>=-1\\\left(m+1\right)^2=\left(m+1\right)\end{matrix}\right.\\\left\{{}\begin{matrix}m>=5\\\left(m+7\right)^2=m-5\end{matrix}\right.\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}m>=-1\\m\left(m+1\right)=0\end{matrix}\right.\\\left\{{}\begin{matrix}m>=5\\m^2+14m+49-m+5=0\end{matrix}\right.\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}m\in\left\{0;-1\right\}\\\left\{{}\begin{matrix}m>=5\\m^2+13m+54=0\end{matrix}\right.\end{matrix}\right.\)
=>\(m\in\left\{0;-1\right\}\)