Rút gọn A= 2.cos( \(\pi\)/2+x)+ sin(5\(\pi\) -x)+ sin(3\(\pi\) /2+x)+cos(\(\pi\) /2+x)
B= sin(\(\pi\) +x)- cos( \(\pi\)/2+x) + cot(2\(\pi\) -x)+tan(2\(\pi\) /2 +x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(2\sin x-\sqrt{3}=0\\ \Leftrightarrow\sin x=\dfrac{\sqrt{3}}{2}=\sin\dfrac{\pi}{3}\\ \Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{\pi}{3}+k_12\pi\\x_2=\pi-\dfrac{\pi}{3}+k_22\pi=\dfrac{2\pi}{3}+k_22\pi\end{matrix}\right.\left(k_1,k_2\inℤ\right)\)
Mà: \(x\in\left[0;2\pi\right]\) do đó nên: \(k_1=0,k_2=0\)
Vậy tập nghiệm pt là: \(S=\left\{\dfrac{\pi}{3};\dfrac{2\pi}{3}\right\}\) (2 nghiệm => D)
Câu 2:
Vì: \(-1\le\cos x\le1\forall x\)
\(\Rightarrow-1\le m+1\le1\\ \Leftrightarrow-2\le m\le0\)
Mà: \(m\inℤ\Rightarrow m\in\left\{-2;-1;0\right\}\) (C)
Câu 1: \(2\cdot sinx-\sqrt{3}=0\)
=>\(sinx=\dfrac{\sqrt{3}}{2}\)
=>\(\left[{}\begin{matrix}x=\dfrac{\Omega}{3}+k2\Omega\\x=\Omega-\dfrac{\Omega}{3}+k2\Omega=\dfrac{2}{3}\Omega+k2\Omega\end{matrix}\right.\)
Để \(x\in\left[0;2\Omega\right]\) thì \(\left[{}\begin{matrix}\dfrac{\Omega}{3}+k2\Omega\in\left[0;2\Omega\right]\\\dfrac{2}{3}\Omega+k2\Omega\in\left[0;2\Omega\right]\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2k+\dfrac{1}{3}\in\left[0;2\right]\\2k+\dfrac{2}{3}\in\left[0;2\right]\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2k\in\left[-\dfrac{1}{3};\dfrac{5}{3}\right]\\2k\in\left[-\dfrac{2}{3};\dfrac{4}{3}\right]\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}k\in\left[-\dfrac{1}{6};\dfrac{5}{6}\right]\\k\in\left[-\dfrac{1}{3};\dfrac{2}{3}\right]\end{matrix}\right.\Leftrightarrow k=0\)
=>Chọn B
Câu 2:
Để phương trình cosx =m+1 có nghiệm thì -1<=m+1<=1
=>-2<=m<=0
mà m nguyên
nên \(m\in\left\{-2;-1;0\right\}\)
=>Chọn C
a: \(cos\left(x-15^0\right)=\dfrac{\sqrt{2}}{2}\)
=>\(\left[{}\begin{matrix}x-15^0=45^0+k\cdot360^0\\x-15^0=-45^0+k\cdot360^0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=60^0+k\cdot360^0\\x=-30^0+k\cdot360^0\end{matrix}\right.\)
b: \(cos\left(2x+\dfrac{\Omega}{3}\right)+cos\left(x-\dfrac{\Omega}{3}\right)=0\)
=>\(cos\left(2x+\dfrac{\Omega}{3}\right)=-cos\left(x-\dfrac{\Omega}{3}\right)\)
=>\(cos\left(2x+\dfrac{\Omega}{3}\right)=cos\left(\Omega-x+\dfrac{\Omega}{3}\right)\)
=>\(cos\left(2x+\dfrac{\Omega}{3}\right)=cos\left(-x+\dfrac{4\Omega}{3}\right)\)
=>\(\left[{}\begin{matrix}2x+\dfrac{\Omega}{3}=-x+\dfrac{4\Omega}{3}+k2\Omega\\2x+\dfrac{\Omega}{3}=x-\dfrac{4}{3}\Omega+k2\Omega\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=\Omega+k2\Omega\\x=-\dfrac{5}{3}\Omega+k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{\Omega}{3}+\dfrac{k2\Omega}{3}\\x=-\dfrac{5}{3}\Omega+k2\Omega\end{matrix}\right.\)
c: \(sin\left(3x+1\right)=sin\left(x-2\right)\)
=>\(\left[{}\begin{matrix}3x+1=x-2+k2\Omega\\3x+1=\Omega-x+2+k2\Omega\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-3+k2\Omega\\4x=1+\Omega+k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{3}{2}+k\Omega\\x=\dfrac{1}{4}+\dfrac{\Omega}{4}+\dfrac{k\Omega}{2}\end{matrix}\right.\)
a, d(B;SC) = d(B;(SAC))
Kẻ BH vuông AC
Ta có d(B;(SAC)) = BH
ADHT : \(\dfrac{1}{BH^2}=\dfrac{1}{AB^2}+\dfrac{1}{BC^2}=\dfrac{1}{a^2}+\dfrac{1}{a^2}=\dfrac{2a^2}{a^4}=\dfrac{2}{a^2}\Rightarrow BH=\dfrac{a}{\sqrt{2}}\)
b,
Ta có AB vuông BC
SA vuông BC; AB; SA chứa (SAB)
=> BC vuông (SAB)
Kẻ AK vuông SB => AK là kc giứa (A;(SBC))
=> AK = a/ căn 2
c, Kẻ CD // AB
=> d(AB;SC) = d(AB;(SCD)) = d(A;(SCD))
Kẻ AM vuông CD; SA vuông CD
=> CD vuông (SAM)
Kẻ AG vuông SM => AG là khoảng cách
Xét tứ giác ABCM có AM// BC; AB//MC
=> tg ABCM là hbh => AM = BC = a
Xét tam giác SAM vuông tại A
ADHT \(\dfrac{1}{AG^2}=\dfrac{1}{SA^2}+\dfrac{1}{AK^2}\Rightarrow AG=\dfrac{a}{\sqrt{2}}\)
Ta giả sử
TH1 : Chỉ có B nói sai ,
Ta thấy B,D không thể cùng là người thấp nhất
=> Loại
TH2 : Chỉ có C nói sai
Khi đó , sẽ có 2 khả năng xảy ra: hoặc C và A là người cao nhất , hoặc C và D là người thấp nhất (vô lý)
=> Loại
TH3 : Chỉ có D nói sai
Khi đó D cao hơn B hoặc C , mặt khác lời của B và C trong TH này là đúng nên khi D nói sai ta không thể tìm được người thấp nhất
=> Loại
TH4 : Chỉ có A nói sai
Khi đó ta dễ thấy A cao hơn C và D , do A không là người cao nhất nên người cao nhất là B
Vậy chỉ có TH4 là thỏa mãn yêu cầu bài toán
=> D là người thấp nhất , A là người nói sai , Chiều cao 4 bạn chiều giảm dần là B,A,C,D
\(y=x^3-3x^2+2\)
=>\(y'=3x^2-6x\)
Phương trình tiếp tuyến sẽ có dạng là:
\(y-y_0=y'\left(x_0\right)\left(x-x_0\right)\)
Do đó, ta có: \(y'=9\)
=>\(3x^2-6x=9\)
=>\(x^2-2x=3\)
=>\(x^2-2x-3=0\)
=>(x-3)(x+1)=0
=>\(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
TH1: x=3
\(y\left(3\right)=3^3-3\cdot3^2+2=2\)
\(y'\left(3\right)=3\cdot3^2-6\cdot3=3\cdot9-18=27-18=9\)
Phương trình tiếp tuyến là:
y-2=9(x-3)
=>y-2=9x-27
=>y=9x-27+2=9x-25
TH2: x=-1
\(y\left(-1\right)=\left(-1\right)^3-3\cdot\left(-1\right)^2+1=-1-3+1=-3\)
Phương trình tiếp tuyến là:
y-(-3)=9(x+1)
=>y+3=9x+9
=>y=9x+6
\(A=2\cdot cos\left(\dfrac{\Omega}{2}+x\right)+sin\left(5\Omega-x\right)+sin\left(\dfrac{3\Omega}{2}+x\right)+cos\left(\dfrac{\Omega}{2}+x\right)\)
\(=3\cdot cos\left(\dfrac{\Omega}{2}+x\right)+sin\left(\Omega-x\right)+sin\left(\dfrac{\Omega}{2}+\Omega+x\right)\)
\(=-3\cdot sinx+sinx+cos\left(\Omega+x\right)\)
\(=-2\cdot sinx-cosx\)
\(B=sin\left(\Omega+x\right)-cos\left(\dfrac{\Omega}{2}+x\right)+cot\left(2\Omega-x\right)+tan\left(\dfrac{2\Omega}{2}+x\right)\)
\(=-sinx+sinx+cot\left(-x\right)+tan\left(x\right)\)
\(=tanx-cotx=tanx-\dfrac{1}{tanx}=\dfrac{tan^2x-1}{tanx}\)