Cho hai đường tròn bằng nhau (O; R) và (O/; R) cắt nhau tại A và B sao cho tâm đường tròn này nằm trên đường tròn kia. Tính theo R diện tích tứ giác OAO/B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình đường thẳng nối 2 điểm \(A\left(x_A;y_A\right)\)và \(B\left(x_B;y_B\right)\)là:
\(\frac{y-y_A}{y_B-y_A}=\frac{x-x_A}{x_B-x_A}\)
Rồi bạn biến đổi để về dạng tổng quát. Không cần giải hệ mà có luôn công thức nâng cao.
thực tế 1m tương đương với một dòng sông trung bình nha
Ta có \(x^4+x^2+1\le x^4+2x^2+1=\left(x^2+1\right)^2\)
Mà \(\left(x^2\right)^2=x^4< x^4+x^2+1\)nên \(\left(x^2\right)^2< x^4+x^2+1\le\left(x^2+1\right)^2\)
\(\Leftrightarrow x^4+x^2+1=\left(x^2+1\right)^2\)\(\Leftrightarrow y^2=\left(x^2+1\right)^2\)
Thay vào phương trình đã cho, ta có: \(x^4+x^2+1=\left(x^2+1\right)^2\)
\(\Leftrightarrow x^4+x^2+1=x^4+2x^2+1\)\(\Leftrightarrow x^2=0\)\(\Leftrightarrow x=0\)
Khi đó \(y^2=\left(x^2+1\right)^2=\left(0^2+1\right)^2=1\)\(\Leftrightarrow y=\pm1\)
Vậy phương trình đã cho có hai nghiệm nguyên là \(\left(0;1\right)\)và \(\left(0;-1\right)\)
Giả thiết cho chưa đủ kìa. Chỉ biết \(cosA=\frac{3}{4}\)mà không biết độ dài của bất kì cạnh sao tính được cạnh?
à bài này cô trường mình kêu sai đề rồi ạ. dù sao cũng cảm ơn bạn
a) Gọi I là trung điểm của OA, ta ngay lập tức có được \(IO=IA=\frac{OA}{2}\)và BI, CI lần lượt là các trung tuyến của các tam giác OAB và OAC
Vì AB là tiếp tuyến tại A của đường tròn (O) \(\Rightarrow AB\perp OB\)tại B \(\Rightarrow\Delta OAB\)vuông tại B
\(\Delta OAB\)vuông tại B có trung tuyến BI \(\Rightarrow IB=\frac{OA}{2}\)
Chứng minh tương tự, ta có: \(IC=\frac{OA}{2}\)
Như vậy ta có \(IO=IA=IB=IC\left(=\frac{OA}{2}\right)\)
Vậy 4 điểm A, B, O, C cùng nằm trên đường tròn có tâm I, đường kính là OA.
b) Nhận thấy \(OB=OC\)(cùng bằng bán kính của (O))
\(\Rightarrow\)O nằm trên đường trung trực của BC. (1)
Xét đường tròn (O) có 2 tiếp tuyến tại B và C cắt nhau tại A \(\Rightarrow AB=AC\)(tính chất 2 tiếp tuyến cắt nhau)
\(\Rightarrow\)A nằm trên đường trung trực của BC. (2)
Từ (1) và (2) \(\Rightarrow\)OA là trung trực của BC \(\Rightarrow OA\perp BC\left(đpcm\right)\)
????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
Gọi I là giao của OO' với AB
Ta có
OA=O'A=OB=O'B=R => OAO'B là hình thoi (Tứ giác có 4 cạnh bằng nhau là hình thoi)
\(\Rightarrow AB\perp OO'\)(trong hình thoi 2 đường chéo vuông góc)
Ta có OO'=R => OI=OO'/2=R/2 (trong hình thoi hai đường chéo cắt nhau tại trung điểm mỗi đường)
Xét tg vuông AOI có
\(AI=\sqrt{OA^2-OI^2}=\sqrt{R^2-\frac{R^2}{4}}=\frac{R\sqrt{3}}{2}=\frac{AB}{2}\Rightarrow AB=R\sqrt{3}\)
\(\Rightarrow S_{OAO'B}=\frac{OO'.AB}{2}=\frac{R.R\sqrt{3}}{2}=\frac{R^2\sqrt{3}}{2}\)