mở ngoặc 2024 - x tất cẩ mũ 2 = 1 - y mũ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(15\%+1,1:\left(\dfrac{2}{5}-1\dfrac{1}{2}\right)-\left(-\dfrac{1}{3}\right)^2\)
\(=\dfrac{3}{2}-\dfrac{1}{9}+1,1:\left(0,4-1,5\right)\)
\(=\dfrac{27-2}{18}+1,1:\left(-1,1\right)\)
\(=\dfrac{25}{18}-1=\dfrac{7}{18}\)
\(\dfrac{1}{3}\). \(\dfrac{6}{-7}\) = \(\dfrac{ }{7}\)
\(\dfrac{2}{-7}\) = \(\dfrac{ }{7}\)
\(◻\) = \(\dfrac{2}{-7}\) x 7
\(◻\) = \(-2\)
\(\dfrac{-2}{3}\).\(\dfrac{-5}{8}\) = \(\dfrac{ }{12}\)
\(\dfrac{5}{12}\) = \(\dfrac{◻}{12}\)
\(◻\) = \(\dfrac{5}{12}\) \(\times\) 12
\(◻\) = 5
\(\dfrac{-2}{3}.\dfrac{-5}{8}\) = \(\dfrac{5}{12}\)
d; \(\dfrac{x}{468}\) = \(\dfrac{-7}{13}\).\(\dfrac{5}{9}\)
\(\dfrac{x}{468}\) = \(\dfrac{-35}{117}\)
\(x\) = \(\dfrac{-35}{117}\) \(\times\) 468
\(x\) = - 140
Vậy \(x=-140\)
e; \(\dfrac{2}{3}.x\) - \(\dfrac{4}{7}=\dfrac{1}{8}\)
\(\dfrac{2}{3}.x\) = \(\dfrac{1}{8}\) + \(\dfrac{4}{7}\)
\(\dfrac{2}{3}\).\(x\) = \(\dfrac{39}{56}\)
\(x\) = \(\dfrac{39}{56}\) : \(\dfrac{2}{3}\)
\(x\) = \(\dfrac{117}{112}\)
Vậy \(x\) = \(\dfrac{117}{112}\)
f; \(\dfrac{-2}{3}\) : (\(\dfrac{1}{2}\) - 3\(x\)) = \(\dfrac{5}{3}\)
\(\dfrac{1}{2}\) - 3\(x\) = \(\dfrac{-2}{3}\) : \(\dfrac{5}{3}\)
\(\dfrac{1}{2}\) - 3\(x\) = \(\dfrac{-2}{5}\)
3\(x\) = \(\dfrac{1}{2}\) + \(\dfrac{2}{5}\)
3\(x\) = \(\dfrac{9}{10}\)
\(x\) = \(\dfrac{9}{10}\) : 3
\(x\) = \(\dfrac{3}{10}\)
Vậy \(x=\dfrac{3}{10}\)
Giải:
n ⋮ 9 ⇔ 7 + a + 5 + 8 + b + 4 ⋮ 9
(7 + 5 + 8 + 4) + (a + b) ⋮ 9
24 + (a + b) ⋮ 9
a + b - 3 ⋮ 9 (1)
a - b = 6
a = 6 + b
Thay a = 6 + b vào biểu thức (1)
6 + b + b - 3 ⋮ 9
2b + 3 ⋮ 9
⇒ 2b + 3 \(\in\) B(9) = {0; 9; 18; 27; 36;..;}
Lập bảng ta có:
2b + 3 | 0 | 9 | 18 | 27 | 36 |
b | -3/2 | 3 | 15/2 | 12 | 33/2 |
0≤ b ≤ 9; b \(\in\) N | Loại | Loại | Loại | Loại |
Theo bảng trên ta có: b = 3; Thay b = 3 vào biểu thức a = 6 + b
ta có: a = 6 + 3 = 9
Vậy (a; b) = (9; 3)
A = \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\)
A = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\)
A = \(\dfrac{1}{2}\) - \(\dfrac{1}{7}\)
A = \(\dfrac{5}{14}\)
1/(2.3) + 1/(3.4) + 1/(4.5) + 1/(5.6) + 1/(6.7)
= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 + 1/6 + 1/6 - 1/7
= 1/2 - 1/7
= 5/14
Đặt \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
=>\(2A=1+\dfrac{1}{2}+...+\dfrac{1}{2^8}\)
=>\(2A-A=1+\dfrac{1}{2}+...+\dfrac{1}{2^8}-\dfrac{1}{2}-\dfrac{1}{2^2}-...-\dfrac{1}{2^9}\)
=>\(A=1-\dfrac{1}{2^9}=\dfrac{2^9-1}{2^9}=\dfrac{511}{512}\)
\(\left(2024-x\right)^2=1-y^2\)
=>\(\left(2024-x\right)^2+y^2=1\)
mà x,y nguyên
nên \(\left(2024-x\right)^2+y^2=0+1=1+0\)
TH1: \(\left\{{}\begin{matrix}\left(2024-x\right)^2=0\\y^2=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2024-x=0\\y\in\left\{1;-1\right\}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2024\\y\in\left\{1;-1\right\}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}\left(2024-x\right)^2=1\\y^2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2024-x\in\left\{1;-1\right\}\\y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\in\left\{2023;2025\right\}\\y=0\end{matrix}\right.\)