Cho mình hỏi sin cos tan là gì vậy ạ? Học rồi mà quên mất=)))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x>=0
\(\dfrac{2\sqrt{x}-6}{x-\sqrt{x}+1}< 0\)
mà \(x-\sqrt{x}+1=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\forall x\) thỏa mãn ĐKXĐ
nên \(2\sqrt{x}-6< 0\)
=>\(\sqrt{x}< 3\)
=>0<=x<9
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-2\\y\ne-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{2x}{x+2}-\dfrac{3y}{y+1}=-4\\\dfrac{x}{x+2}+\dfrac{2y}{y+1}=\dfrac{1}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2x+4-4}{x+2}-\dfrac{3y+3-3}{y+1}=-4\\\dfrac{x+2-2}{x+2}+\dfrac{2y+2-2}{y+1}=\dfrac{1}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2-\dfrac{4}{x+2}-3+\dfrac{3}{y+1}=-4\\1-\dfrac{2}{x+2}+2-\dfrac{2}{y+1}=\dfrac{1}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{4}{x+2}+\dfrac{3}{y+1}=-4-2+3=-6+3=-3\\-\dfrac{2}{x+2}-\dfrac{2}{y+1}=\dfrac{1}{3}-3=-\dfrac{8}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{-4}{x+2}+\dfrac{3}{y+1}=-3\\\dfrac{-4}{x+2}-\dfrac{4}{y+1}=-\dfrac{16}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-4}{x+2}+\dfrac{3}{y+1}+\dfrac{4}{x+2}+\dfrac{4}{y+1}=-3+\dfrac{16}{3}\\\dfrac{-4}{x+2}-\dfrac{4}{y+1}=-\dfrac{16}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{7}{y+1}=\dfrac{7}{3}\\\dfrac{1}{x+2}+\dfrac{1}{y+1}=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+1=3\\\dfrac{1}{x+2}=\dfrac{4}{3}-\dfrac{1}{3}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2\\x=-1\end{matrix}\right.\left(nhận\right)\)
ĐKXĐ: x<>-2
\(\dfrac{x-3}{x+2}>=0\)
TH1: \(\left\{{}\begin{matrix}x-3>=0\\x+2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=3\\x>-2\end{matrix}\right.\)
=>x>=3
TH2: \(\left\{{}\begin{matrix}x-3< =0\\x+2< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =3\\x< -2\end{matrix}\right.\)
=>x<-2
\(\dfrac{5+2\sqrt{5}}{\sqrt{5}}+\dfrac{3+\sqrt{3}}{\sqrt{3}}-\left(\sqrt{5}+\sqrt{3}\right)\\ =\dfrac{\sqrt{5}\left(\sqrt{5}+2\right)}{\sqrt{5}}+\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}}-\left(\sqrt{5}+\sqrt{3}\right)\\ =\left(\sqrt{5}+2\right)+\left(\sqrt{3}+1\right)-\left(\sqrt{5}+\sqrt{3}\right)\\ =\sqrt{5}+2+\sqrt{3}+1-\sqrt{5}-\sqrt{3}\\ =2+1=3\)
\(\sqrt{\dfrac{9}{4}}-\sqrt{2}+\sqrt{2}\\ =\dfrac{3}{2}-\left(\sqrt{2}-\sqrt{2}\right)\\ =\dfrac{3}{2}-0\\ =\dfrac{3}{2}\)
\(H=\dfrac{4}{1-\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\\ =\dfrac{4\left(1+\sqrt{3}\right)}{\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}-\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\\ =\dfrac{4\left(1+\sqrt{3}\right)}{1-3}-\sqrt{3}\\ =\dfrac{4\left(1+\sqrt{3}\right)}{-2}-\sqrt{3}\\ =-2\left(1+\sqrt{3}\right)-\sqrt{3}\\ =-2-2\sqrt{3}-\sqrt{3}\\ =-2-3\sqrt{3}\)
Tam giác ABC vuông tại A ta có:
\(tanB=\dfrac{AC}{AB}=>\dfrac{5}{12}=\dfrac{AC}{6}=>AC=\dfrac{5\cdot6}{12}=\dfrac{5}{2}\left(cm\right)\)
Áp dụng định lý Py-ta-go cho tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\\ =>BC=\sqrt{AB^2+AC^2}\\ =>BC=\sqrt{6^2+\left(\dfrac{5}{2}\right)^2}=\dfrac{13}{2}\left(cm\right)\)
Để giải bài toán, ta cần sử dụng một số công thức và định lý trong hình học, đặc biệt là định lý Pythagore và định nghĩa của các hàm số lượng giác.
Cho tam giác ABC vuông tại A, với AB = 6 cm và tanα = 5/12. Góc B = α.
a) Tính độ dài cạnh AC
Vì tam giác vuông tại A, góc α là góc B, ta có:
tan(α)=đoˆˊi diệnkeˆˋ\tan(\alpha) = \frac{\text{đối diện}}{\text{kề}}tan(α)=keˆˋđoˆˊi diện
Trong tam giác ABC vuông tại A:
tan(α)=BCAC\tan(\alpha) = \frac{BC}{AC}tan(α)=ACBC
Theo đề bài, tan(α)=512\tan(\alpha) = \frac{5}{12}tan(α)=125.
Do đó, ta có:
BCAC=512\frac{BC}{AC} = \frac{5}{12}ACBC=125
Từ đó suy ra:
BC=512ACBC = \frac{5}{12} ACBC=125AC
b) Tính độ dài cạnh BC
Ta sử dụng định lý Pythagore cho tam giác ABC vuông tại A:
BC2=AB2+AC2BC^2 = AB^2 + AC^2BC2=AB2+AC2
Đầu tiên, ta cần tính AC.
Biết rằng tan(α)=512\tan(\alpha) = \frac{5}{12}tan(α)=125, do đó ta có:
sin(α)=BCBC2+AC2\sin(\alpha) = \frac{BC}{BC^2 + AC^2}sin(α)=BC2+AC2BC sin(α)=BCBC2+AC2\sin(\alpha) = \frac{BC}{BC^2 + AC^2}sin(α)=BC2+AC2BC
Vì tan(α) = 5/12 nên ta đặt BC = 5k và AC = 12k. Vì thế:
BC=5kBC = 5kBC=5k
AC=12kAC = 12kAC=12k
Sử dụng định lý Pythagore:
BC2=AB2+AC2BC^2 = AB^2 + AC^2BC2=AB2+AC2
(5k)2=AB2+(12k)2(5k)^2 = AB^2 + (12k)^2(5k)2=AB2+(12k)2
25k2=62+144k225k^2 = 6^2 + 144k^225k2=62+144k2
25k2=36+144k225k^2 = 36 + 144k^225k2=36+144k2
Từ đó, ta có:
AC=12k5AC = \frac{12k}{5}AC=512k
AC2=AB2+BC2AC^2 = AB^2 + BC^2AC2=AB2+BC2
(12k)2=62+(5k)2(12k)^2 = 6^2 + (5k)^2(12k)2=62+(5k)2
144k2=36+25k2144k^2 = 36 + 25k^2144k2=36+25k2
144k2−25k2=36144k^2 - 25k^2 = 36144k2−25k2=36
119k2=36119k^2 = 36119k2=36
k2=36119k^2 = \frac{36}{119}k2=11936
k=36119k = \sqrt{\frac{36}{119}}k=11936
k=6119k = \frac{6}{\sqrt{119}}k=1196
BC=5k=5×6119=30119BC = 5k = 5 \times \frac{6}{\sqrt{119}} = \frac{30}{\sqrt{119}}BC=5k=5×1196=11930
AC=12k=12×6119=72119AC = 12k = 12 \times \frac{6}{\sqrt{119}} = \frac{72}{\sqrt{119}}AC=12k=12×1196=11972
Chúng ta có thể tính toán lại bằng cách:
Suy ra: BC=512ACBC = \frac{5}{12} ACBC=125AC AC=12×65=14.4AC = \frac{12 \times 6}{5} = 14.4AC=512×6=14.4 BC=5×1.2=6BC = 5 \times 1.2 = 6BC=5×1.2=6
Suy ra:...
Chúng đều được định nghĩa dựa trên các cạnh của tam giác vuông và góc nhọn trong tam giác đó. Sin: Tỷ số giữa cạnh đối diện với góc nhọn và cạnh huyền của tam giác vuông. Cos: Tỷ số giữa cạnh kề với góc nhọn và cạnh huyền của tam giác vuông. Tan: Tỷ số giữa cạnh đối diện và cạnh kề của góc nhọn trong tam giác vuông.
@ ánh lê Copy phải ghi Tk nhé!
Tk = Tham khảo