1,53(35)+636,26(364)=bảo nhiêu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi $d=ƯCLN(n+1, 4n^2-2n-5)$
$\Rightarrow n+1\vdots d; 4n^2-2n-5\vdots d$
$\Rightarrow 4(n+1)^2-(4n^2-2n-5)\vdots d$
$\Rightarrow 10n+9\vdots d$
$\Rightarrow 10(n+1)-1\vdots d$
Mà $n+1\vdots d$ nên $1\vdots d\Rightarrow d=1$
Vậy $n+1, 4n^2-2n-5$ nguyên tố cùng nhau. Để $(n+1)(4n^2-2n-5)$ là scp thì bản thân mỗi số $n+1, 4n^2-2n-5$ là scp.
Đặt $n+1=a^2; 4n^2-2n-5=b^2$
$\Rightarrow 4(a^2-1)^2-2(a^2-1)-5=b^2$
$\Leftrightarrow 4a^4-8a^2+4-2a^2+2-5=b^2$
$\Leftrightarrow 4a^4-10a^2+1=b^2$
$\Leftrightarrow 16a^4-40a^2+4=4b^2$
$\Leftrightarrow (4a^2-5)^2-21=4b^2$
$\Leftrightarrow 21=(4a^2-5)^2-(2b)^2=(4a^2-5-2b)(4a^2-5+2b)$
Đến đây là dạng phương trình tích cơ bản, chỉ cần xét các TH để tìm ra $a,b$
Đề không đầy đủ. Bạn nên viết đầy đủ yêu cầu và điều kiện đề, trình bày bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn nhé.
Lời giải:
$\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}$
$\Rightarrow 1+\frac{a+b+c+d}{a}=1+\frac{a+b+c+d}{b}=1+\frac{a+b+c+d}{c}=1+\frac{a+b+c+d}{d}$
$\Rightarrow \frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}$
$\Rightarrow a+b+c+d=0$ hoặc $a=b=c=d$
Nếu $a+b+c+d=0$ thì:
$M=\frac{a+b}{-(a+b)}+\frac{b+c}{-(b+c)}+\frac{c+d}{-(c+d)}+\frac{d+a}{-(d+a)}=(-1)+(-1)+(-1)+(-1)=-4$
Nê $a=b=c=d$ thì:
$M=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}$
$=1+1+1+1=4$
Lời giải:
a. Chiều dài mới bằng $100+30=130$ % chiều dài cũ.
Chiều rộng mới bằng $100+20=120$ % chiều rộng cũ.
Diện tích mới bằng: $130.120:100=156$ (%) diện tích cũ.
Diện tích sân vận động tăng $156-100=56$ %
b.
30% chiều dài sân vận động tăng thêm ứng với 60 m
Suy ra chiều dài sân vận động ban đầu là: $60:30.100=200$ (m)
Chiều rộng sân vận động ban đầu: $200\times 3:4=150$ (m)
Dấu ngoặc () trong phép tính để làm gì hả bạn?
=231652,19