Cho tam giác ABC vuông tại A , đường cao AH biết BC=10cm và AH = 4,8 cm. Tính AB, AC, BH, H
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác HAB vuông tại H, đường cao HM
Ta có HA^2 = AM . AB ( htl)
Xét tam HAC vuông tại H, đường cao HN
Ta có HA^2 = AN . AC (htl)
=> AM . AB = AN . AC
b, Xét tam giác AMN và tam giác ACB
có AM/AC = AN/AB (tỉ lệ thức cma)
^MAN _ chung
Vậy tam giác AMN ~ tam giác ACB (c.g.c)
Với \(x \ge 0,x \ne 1\) có:
\(A=\dfrac{x+3\sqrt{x}+2}{(\sqrt{x}+2)(\sqrt{x}-1)}-\dfrac{x+\sqrt{x}}{x-1}\)
\(A=\dfrac{(x+3\sqrt{x}+2)(\sqrt{x}+1)-(x+\sqrt{x})(\sqrt{x}+2)}{(\sqrt{x}+2)(\sqrt{x}-1)(\sqrt{x}+1)}\)
\(A=\dfrac{x\sqrt{x}+x+3x+3\sqrt{x}+2\sqrt{x}+2-x\sqrt{x}-2x-x-2\sqrt{x}}{(\sqrt{x}+2)(\sqrt{x}-1)(\sqrt{x}+1)}\)
\(A=\dfrac{x+3\sqrt{x}+2}{(\sqrt{x}+2)(\sqrt{x}-1)(\sqrt{x}+1)}\)
\(A=\dfrac{(\sqrt{x}+2)(\sqrt{x}-1)}{(\sqrt{x}+2)(\sqrt{x}-1)(\sqrt{x}+1)}\)
\(A=\dfrac{1}{\sqrt{x}+1}\)
Với \(x \ge 0,x \ne 9\) có:
\(B=\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{\sqrt{x}-21}{9-x}+\dfrac{1}{\sqrt{x}+3}\)
\(B=\dfrac{\sqrt{x}(\sqrt{x}+3)-\sqrt{x}+21+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}\)
\(B=\dfrac{x+3\sqrt{x}-\sqrt{x}+21+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}\)
\(B=\dfrac{x+3\sqrt{x}+18}{x-9}\)
b) Áp dụng hệ thức lượng vào tam giác vuông ABC là:
\(AH^2=HB.HC=9.12=108\Rightarrow AH=\sqrt{108}=6\sqrt{3}\)
\(AB^2=BH.BC=BH.\left(BH+HC\right)=9.\left(9+12\right)=189\Rightarrow AB=\sqrt{189}=3\sqrt{21}\)
\(AC^2=HC.BC=12\left(12+9\right)=252\Rightarrow AC=\sqrt{252}=6\sqrt{7}\)
a)
Áp dụng hệ thức lượng trong tam giác ABC vuông tại A, ta có :
$AH^2 = BH.HC = 9.12 = 108 \Rightarrow AH = $ \(6\sqrt{3}\) (cm)
Áp dụng định lí Pitago, ta có :
$AB^2 = AH^2 + HB^2 = 189 \Rightarrow AB = $ \(3\sqrt{21}\) (cm)
$AC^2 = AH^2 + HC^2 = 252 \Rightarrow AC = $ \(6\sqrt{7}\) (cm)
b)
Trong tứ giác ADHE có góc DAE = góc AEH = góc ADH = 90o
Do đó ADHE là hình chữ nhật
Suy ra :
DE = AH = \(6\sqrt{3}\) cm
Ta có : \(\dfrac{1}{HE^2}=\dfrac{1}{AH^2}+\dfrac{1}{HC^2}=\dfrac{1}{\left(6\sqrt{3}\right)^2}+\dfrac{1}{12^2}\Rightarrow HE=\dfrac{12\sqrt{21}}{7}\)cm
Ta có : \(\dfrac{1}{DH^2}=\dfrac{1}{AH^2}+\dfrac{1}{BH^2}=\dfrac{1}{\left(6\sqrt{3}\right)^2}+\dfrac{1}{9^2}\Rightarrow DH=\dfrac{18\sqrt{7}}{7}\)cm
\(S_{ADHE}=HE.DH=\dfrac{12\sqrt{21}}{7}.\dfrac{18\sqrt{7}}{7}=53,44\left(cm^2\right)\)
\(2\left(3n-1\right)-2\left(n+1\right)>4\)
\(\Leftrightarrow6n-2-2n-2>4\)
\(\Leftrightarrow4n>8\Leftrightarrow n>2\)
\(5\left(n+2\right)-2\left(2n-1\right)\le15\)
\(\Leftrightarrow5n+10-4n+2\le15\)
\(\Leftrightarrow n\le3\)
n = 3 thoả mãn 2 BPT
Đồng dạng như sau ABC, HBA, HAC.
hoặc là Diện tích tam giác ABC , 2.AB. AC = 2 xy = 10 x 4,8
x2 + y2= 10 và xy= 24
Hai phương tình 2 ẩn số, bạn giải được đúng không?
Đoạn cuối là HC nha