cho hình vuông ABCD, điểm M thuộc cạnh AB,N thuộc cạnh AD sao cho AM = DN. Gọi I là giao điểm của CN và DM, c/m
a) góc ADM = góc DCN
b) Tia OI là phân giác của góc MIC ( O là giao điểm của AC và BD)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC vuông tại A:
Áp dụng định lý Pitago ta có:
\(BC^2=AB^2+AC^2\)
=>\(BC=\sqrt{9^2+12^2}\)
=>\(BC=15\)
Áp dụng hệ thức (2) về cạnh và đường cao trong tam giác vuông ta có:
\(AC.AB=AH.BC\)
=>\(AH=\dfrac{9.12}{15}=7,2\)
Áp dụng tính chất đường phân giác ta có:
\(\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{9}{12}=\dfrac{3}{4}\)
=>4BD-3DC=0 (*)
Mặt khác: BD+DC=BC=15 (**)
Giải hệ phương trình (*) và (**) ta được: \(\left\{{}\begin{matrix}BD=...\\DC=...\end{matrix}\right.\)
\(\sqrt{1-2x}-5=0\\ < =>\sqrt{1-2x}=5\left(ĐK:x\le\dfrac{1}{2}\right)\\ < =>1-2x=5^2\\ < =>2x=-24\\ < =>x=-12\left(TMDK\right)\)
\(\sqrt{x^2+4}=5\left(ĐK:x\in R\right)\\ < =>x^2+4=5^2\\ < =>x^2=21\\ < =>x=\pm\sqrt{21}\left(TMDK\right)\)
mũ cả hai bên
1- 2x = 25
x = - 12
thử lại , đe, -12 vào x , ta có mênh đê đúng . vậy x = - 12
....
x 2 khả năng sẽ có 2 giá trị x
mũ 2 hai vế : x2 + 4 = 25, x= \(\sqrt{ }\)21 hay x = -\(\sqrt{ }\) 21.
thử lại , đúng hét
\(\sqrt{x-1}=\sqrt{3x-7}\left(ĐK:x>=\dfrac{7}{3}\right)\\ < =>x-1=3x-7\\ < =>3x-x=7-1\\ < =>2x=6\\ < =>x=3\left(TMDK\right)\)
mũ cả hai bên
2x = 6
x=3
thử lại đem 3 vào x , có mệnh đề đúng /đúng
\(\sqrt{12}-\sqrt{27}+\sqrt{3}\)
\(=2\sqrt{3}-3\sqrt{3}+\sqrt{3}\)
\(=0\)
\(\left(\sqrt{6}+2\right)\left(\sqrt{3}-\sqrt{2}\right)\)
\(=\sqrt{18}-\sqrt{12}+2\sqrt{3}-2\sqrt{2}\)
\(=3\sqrt{2}-2\sqrt{3}+2\sqrt{3}-2\sqrt{2}\)
\(=\sqrt{2}\)
A B C D N M I O
Xét tg vuông ADM và tg vuông DCN có
AM=DN (gt)
AD=CD (cạnh hình vuông)
=> tg ADM = tg DCN (hai tg vuông có 2 cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{ADM}=\widehat{DCN}\)
b/
Ta có
BM=AB-AM
AN=AD-DN
AB=CD (cạnh hình vuông)
AM=DN (gt)
=> AN=BM (1)
AC=BD (đường chéo hình vuông) (2)
\(\widehat{CAN}=\widehat{BDM}=45^o\) (trong hình vuông đường chéo là đường phân giác của hai góc đối nhau) (3)
Từ (1) (2) (3) => tg ACN = tg BDM (c.g.c)
\(\Rightarrow\widehat{ACN}=\widehat{BDM}\) => CDIO là tứ giác nội tiếp
\(\Rightarrow\widehat{OIC}=\widehat{BDC}=45^o\) (góc nội tiếp cùng chắn cung OC) (4)
Ta có
\(\widehat{ADM}=\widehat{DCN}\) (cmt)
Xét tg vuông CDN có
\(\widehat{DCN}+\widehat{DNC}=90^o\Rightarrow\widehat{ADM}+\widehat{DNC}=90^o\Rightarrow\widehat{DIN}=90^o\)
\(\Rightarrow\widehat{MIC}=90^o\) (5)
Từ (4) và (5) \(\Rightarrow\widehat{OIM}=45^o\) (6)
Từ (4) và (6) \(\Rightarrow\widehat{OIC}=\widehat{OIM}=45^o\) => OI là phân giác của \(\widehat{MIC}\))