Cho đường tròn (O; 5cm) và điểm O' với OO' = 7cm. Vẽ đường tròn (O';R'). Với giá trị nào của R' thì đường tròn (O'; R')
a, Cắt đường tròn (O)
b, Tiếp xúc với đường tròn (O).
c. Không có điểm chung vs (O)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
z,\:x^3+y^3+x\cdot \:3=3xyz\quad :\quad z=\frac{x^3+y^3+3x}{3xy};\quad \:x\ne \:0
x^3+y^3+x\cdot \:3=3xyz
\frac{3xyz}{3xy}=\frac{x^3}{3xy}+\frac{y^3}{3xy}+\frac{x\cdot \:3}{3xy};\quad \:x\ne \:0
z=\frac{x^3+y^3+3x}{3xy};\quad \:x\ne \:0
d1 cắt d2 khi a≠a', b=b' ĐK: 4-m≠0⇒m≠4 m-2≠0⇒m≠2
⇔2x≠3x và 4-m = m-2 ⇒ -2m = -6 ⇒ m = 3 (thoả mãn đk)
tính đến đây thì bn thử cho x=1=>y sau đó vẽ trục toạ độ sẽ thấy d1 ko cắt d2 trên trục tung
\(Q=\sqrt[3]{\left(2x\sqrt[]{2x}+1\right)\left(2x\sqrt[]{2x}-1\right)}+\sqrt[3]{8x^3-1}\)
\(=\sqrt[3]{8x^3-1}+\sqrt[3]{8x^3-1}\)
\(=2\sqrt[3]{8x^3-1}\)
BĐT cần chứng minh tương đương:
\(2a+2b+2\ge2\sqrt{a}+2\sqrt{b}+2\sqrt{ab}\)
\(\Leftrightarrow\left(a-2\sqrt{a}+1\right)+\left(b-2\sqrt{b}+1\right)+\left(a+b-2\sqrt{ab}\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-1\right)^2+\left(\sqrt{b}-1\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng với a;b không âm)
Vậy BĐT đã cho được chứng minh
Dấu "=" xảy ra khi và chỉ khi \(a=b=1\)
Áp dụng bđt côsi với các số không âm ta có:
\(a+b\ge2\sqrt{ab}\\ a+1\ge2\sqrt{a}\\ b+1\ge2\sqrt{b}\)
=> \(a+b+a+1+b+1\ge2\sqrt{ab}+2\sqrt{a}+2\sqrt{b}\)
=> \(2a+2b+2\ge2\sqrt{ab}+2\sqrt{a}+2\sqrt{b}\)
=> \(a+b+1\ge\sqrt{a}+\sqrt{b}+\sqrt{ab}\) ( ĐPCM)
a, R' ≥ 2 ≤ 6
b, R' = 2 cm
c, R' = 1 cm
Mong giúp ích cho bn !