K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\widehat{BDA}+\widehat{DBA}=90^0\)(ΔBAD vuông tại A)

\(\widehat{CEB}+\widehat{CBE}=90^0\)(ΔCBE vuông tại C)

mà \(\widehat{DBA}=\widehat{CBE}\)

nên \(\widehat{BDA}=\widehat{CEB}\)

=>\(\widehat{CED}=\widehat{CDE}\)

=>ΔCDE cân tại C

ΔCDE cân tại C

mà CH là đường cao

nên CH là phân giác của góc ECD

Xét ΔABC có \(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0\)

=>\(2\left(\widehat{IBC}+\widehat{ICB}\right)+50^0=180^0\)

=>\(\widehat{IBC}+\widehat{ICB}=\dfrac{180^0-50^0}{2}=65^0\)

Xét ΔIBC có \(\widehat{IBC}+\widehat{ICB}+\widehat{BIC}=180^0\)

=>\(\widehat{BIC}+65^0=180^0\)

=>\(\widehat{BIC}=180^0-65^0=115^0\)

12 tháng 8

đề làm sao ấy bn nhỉ ?

a: Ta có: \(\widehat{HIA}+\widehat{HAI}=90^0\)(ΔHAI vuông tại H)

\(\widehat{KIB}+\widehat{KBI}=90^0\)(ΔKIB vuông tại K)

mà \(\widehat{HIA}=\widehat{KIB}\)(hai góc đối đỉnh)

nên \(\widehat{HAI}=\widehat{KBI}\)

=>\(x=40^0\)

b: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

=>\(x=\widehat{EBD}=\widehat{ECD}=35^0\)

c: Ta có: \(\widehat{IMP}+\widehat{IPM}=90^0\)(ΔMIP vuông tại I)

\(\widehat{MPN}+\widehat{MNP}=90^0\)(ΔMNP vuông tại M)

Do đó: \(x=\widehat{IMP}=\widehat{N}=60^0\)

\(\left|\dfrac{4}{3}x-\dfrac{1}{4}\right|>=0\forall x\)

=>\(A=\left|\dfrac{4}{3}x-\dfrac{1}{4}\right|-\dfrac{2}{11}>=-\dfrac{2}{11}\forall x\)

Dấu '=' xảy ra khi \(\dfrac{4}{3}x-\dfrac{1}{4}=0\)

=>\(\dfrac{4}{3}x=\dfrac{1}{4}\)

=>\(x=\dfrac{1}{4}:\dfrac{4}{3}=\dfrac{3}{16}\)

\(\left|6x+22\right|>=0\forall x;\left(y-21\right)^2>=0\forall y\)

Do đó: \(\left|6x+22\right|+\left(y-21\right)^2>=0\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}6x+22=0\\y-21=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-\dfrac{11}{3}\\y=21\end{matrix}\right.\)

a: \(\left|-\dfrac{1}{3}\right|-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)

\(=\dfrac{1}{3}-1+\dfrac{1}{4}:2=-\dfrac{2}{3}+\dfrac{1}{8}=\dfrac{-16}{24}+\dfrac{3}{24}=-\dfrac{13}{24}\)

b: \(\left(\dfrac{2}{3}\right)^3+\sqrt{\dfrac{49}{81}}-\left|-\dfrac{7}{3}\right|:3\)

\(=\dfrac{8}{27}+\dfrac{7}{9}-\dfrac{7}{3}\cdot\dfrac{1}{3}\)

\(=\dfrac{8}{27}+\dfrac{7}{9}-\dfrac{7}{9}=\dfrac{8}{27}\)

c: \(\sqrt{\dfrac{25}{49}}+\left(5555\right)^0+\left|-\dfrac{2}{7}\right|\)

\(=\dfrac{5}{7}+1+\dfrac{2}{7}\)

=1+1=2

d: \(\left|-5-\sqrt{2}\right|=5+\sqrt{2}\)

c: \(\left|4+\sqrt{3}\right|=4+\sqrt{3}\)

d: \(\left|-\dfrac{4}{15}\right|=\dfrac{4}{15}\)

a: \(\left|3,02\right|=3,02\)