K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2023

\(a,b,c\) lập thành CSN nên \(b^2=ac\)

Ta có \(VT=\left(a+c\right)^2-b^2\) 

\(=a^2+2ac+c^2-ac\)

\(=a^2+ac+c^2\)

\(=a^2+b^2+c^2\)

\(=VP\)

Vậy đẳng thức được chứng minh.

14 tháng 10 2023

 Sửa lại đề bài là \(cos\left(15^o+2\alpha\right)\) (chứ không phải là \(cos^2\left(15^o+2\alpha\right)\) nhé)

 Ta có \(VT=sin^2\left(45^o+\alpha\right)-sin^2\left(30^o-\alpha\right)-sin15^o.cos^2\left(15^o+2\alpha\right)\)

\(=\left[sin\left(45^o+\alpha\right)+sin\left(30^o-\alpha\right)\right]\left[sin\left(45^o+\alpha\right)-sin\left(30^o-\alpha\right)\right]-sin15^ocos^2\left(15^o+2\alpha\right)\)

\(=2sin\left(\dfrac{75^o}{2}\right)cos\left(\dfrac{2\alpha+15^o}{2}\right).2cos\left(\dfrac{75^o}{2}\right)sin\left(\dfrac{2\alpha+15^o}{2}\right)-sin15^ocos^2\left(15^o+2\alpha\right)\)

\(=sin75^o.sin\left(2\alpha+15^o\right)-sin15^o.cos^2\left(2\alpha+15^o\right)\)

\(=sin\left(2\alpha+15^o-15^o\right)\) (dùng \(sin\left(\alpha-\beta\right)=sin\alpha.cos\beta-sin\beta.cos\alpha\))

\(=sin2\alpha=VP\)

Vậy đẳng thức được chứng minh.

14 tháng 10 2023

Mấy chỗ kia bạn sửa hết \(cos^2\left(15^o+2\alpha\right)\) thành \(cos\left(15^o+2\alpha\right)\) nhé.

10 tháng 10 2023

Mn ơi cứu tui

7 tháng 10 2023

Qua G kẻ đường thẳng song song AC lần lượt cắt AD, AB, BC tại E, F, N.

FN⇒�� là giao tuyến của (GHK) và (ABCD)

Nối EH kéo dài cắt SD tại M M⇒� là giao điểm SD và (NHK)

c/ Gọi P là giao điểm của FN kéo dài và CD

Ta có AC//EP��//�� ΔDACΔDEP⇒Δ���∼Δ���, mà BD qua trung điểm của AC BD⇒�� qua trung điểm của EP G⇒� là trung điểm EP

HK//EPΔMEPΔMHK��//��⇒Δ���∼Δ���

Mà MG qua trung điểm của EP  MG qua trung điểm của HK hay G,M,E thẳng hàng

 

7 tháng 10 2023

 Ta có \(A'=d\left(A,d\right)=\dfrac{\left|2-2+2\right|}{\sqrt{1^2+\left(-1\right)^2}}=\sqrt{2}\) (tạm thời mình dịch đề như thế nhé)