cô mai đi chợ mua trái cây.cô đã mua 3kg táo,6kg bưởi và 10kg dưa hấu.Biết số tiền để cô mai mua táo bằng số tiền mua bưởi và dưa hấu.tính giá tiền 1kg mỗi loại.Biết giá 1kg bưởi hơn giá 1kg dưa hấu là 18000 đồng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có AB<AC
mà \(\widehat{ACB};\widehat{ABC}\) lần lượt là góc đối diện của cạnh AB,AC
nên \(\widehat{ACB}< \widehat{ABC}\)
a: Sửa đề: ΔBAD=ΔBED
Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b: Xét ΔMDH và ΔMCB có
\(\widehat{MDH}=\widehat{MCB}\)(hai góc so le trong, DH//BC)
MD=MC
\(\widehat{DMH}=\widehat{CMB}\)(hai góc đối đỉnh)
Do đó: ΔMDH=ΔMCB
=>DH=CB
Câu 27:
a: Xét ΔCAB vuông tại A và ΔCAD vuông tại A có
CA chung
AB=AD
Do đó: ΔCAB=ΔCAD
=>CB=CD
=>ΔDBC cân tại C
b: Xét ΔMCB và ΔMDE có
\(\widehat{MCB}=\widehat{MDE}\)(hai góc so le trong, BC//DE)
MC=MD
\(\widehat{CMB}=\widehat{DME}\)(hai góc đối đỉnh)
Do đó: ΔMCB=ΔMDE
=>BC=DE
Xét ΔEDB có ED+DB>BE
mà ED=BC
nên BD+BC>BE
Câu 26:
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
Xét ΔABC có AB<AC<BC
mà \(\widehat{ACB};\widehat{ABC};\widehat{BAC}\) lần lượt là góc đối diện của các cạnh AB,AC,BC
nên \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)
b: xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
=>DA=DE
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAF=ΔDEC
=>DF=DC
mà DC>DE(ΔDEC vuông tại E)
nên DF>DE
a)Ta có tam giác ABC cân
=>:AB=AC;góc B=góc C.
Xét tam giác AMB và tam giác AMC có:
AB=AC(cmt)
góc BAM=góc CAM (AM là phân giác của góc A).
AM chung.
=>tam giác AMB = tam giác AMC(c-g-c)
b) Vì tam giác AMB = tam giác AMC
=>góc AMB=góc AMC (2 góc tương ứng)
Mà 2 góc ở vị trí kề bù => góc AMB=góc AMC=180:2=90độ
=>AM vuông góc BC
c)
Nếu M là điểm tùy ý trên AH thì BM = MC chứ không phải BM = BA em nhé.
Em cần viết đề bài bằng công thức toán học với biểu tượng Σ trên góc trái màn hình thì mọi người mới hiểu đúng đề để giúp em được.
2\(x\) = 3y ⇒ \(x\) = \(\dfrac{3}{2}\)y
4y = 5z ⇒ z = \(\dfrac{4}{5}y\)
Thay \(x=\dfrac{3}{2}y;\) z = \(\dfrac{4}{5}y\) vào \(x+y+z\) = 11 ta có:
\(\dfrac{3}{2}y\) + y + \(\dfrac{4}{5}y\) = 11
\(\dfrac{33}{10}\)y = 11
y = 11 : \(\dfrac{33}{10}\)
y = \(\dfrac{10}{3}\)
\(x\) = \(\dfrac{3}{2}\) x \(\dfrac{10}{3}\) = 5
z = \(\dfrac{4}{5}\) x \(\dfrac{10}{3}\) = \(\dfrac{8}{3}\)
Vậy \(\left(x;y;z\right)\) = (5; \(\dfrac{10}{3}\); \(\dfrac{8}{3}\))
Gọi giá tiền mua 1 kg táo, 1kg bưởi và 1 kg dưa hấu lần lượt là a(đồng),b(đồng),c(đồng)
Vì số tiền để cô Mai mua táo bằng số tiền mua bưởi và dưa hấu nên 3a=6b=10c
=>\(\dfrac{3a}{30}=\dfrac{6b}{30}=\dfrac{10c}{30}\)
=>\(\dfrac{a}{10}=\dfrac{b}{5}=\dfrac{c}{3}\)
Giá 1kg bưởi hơn 1kg dưa hấu 18000 đồng nên b-c=18000
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{10}=\dfrac{b}{5}=\dfrac{c}{3}=\dfrac{b-c}{5-3}=\dfrac{18000}{2}=9000\)
=>\(a=9000\cdot10=90000;b=9000\cdot5=45000;c=9000\cdot3=27000\)
Vậy: giá tiền mua 1 kg táo, 1kg bưởi và 1 kg dưa hấu lần lượt là 90000 đồng; 45000 đồng; 27000 đồng