BCNN (28, 30,2); BCNN(25 , 30, 3), BCNN (30,35,6,3).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4x2 - y2 - 12x + 9
= [4x2 - 12x + 9]- y2
= [(2x)2 - 2.2.x.3 + 32] - y2
= (2x - 3)2 - y2
= (2x - 3 - y).(2x - 3 + y)
a; 2x - 8 = 2(x -4)
b; 4 - 6x = 2(2 - 3x)
c; 4xy - 2y2 = 2y(2x - y)
d; 3x2 - 12 = 3(x2 - 4) = 3(x - 2)(x + 2)
e; 36x2 - 9y2
= 9(4x2 - y2)
= 9.(2x - y).(2x + y)ư
f; 6x( x - 1) + 3.(x - 1)
= 3.(x - 1).(6x + 1)
g; x2 - 4x + 4 - 4y2
= (x2 - 4x + 4 ) - 4y2
= (x - 2)2 - 4y2
= (x - 2 - 2y)(x - 2 + 2y)
\(x^2+x-1=0\)
=>\(x^2+x+\dfrac{1}{4}-\dfrac{5}{4}=0\)
=>\(\left(x+\dfrac{1}{2}\right)^2=\dfrac{5}{4}\)
=>\(\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{\sqrt{5}}{2}\\x+\dfrac{1}{2}=-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}}{2}-\dfrac{1}{2}\\x=-\dfrac{\sqrt{5}}{2}-\dfrac{1}{2}\end{matrix}\right.\)
\(x^3\) + 3\(x^2\)y + 3\(xy^2\) + y3 - \(x-y\)
= (\(x^3\) + 3\(x^2\)y + 3\(xy^2\) + y3) - (\(x+y\))
= (\(x+y\))3 - (\(x+y\))
= (\(x+y\))[(\(x+y\))2 - 1]
= (\(x+y\))[\(x+y-1\)][\(x+y+1\)]
`3 - (x + 1)^2`
`= 3 - (x^2 + 2x + 1)`
`= 3 - x^2 - 2x - 1`
`= 2 - x^2 - 2x`
3 - (\(x+1\))\(2\)
= 3 - (\(x^2\) + 2\(x\) + 1)
= 3 - \(x^2\) - 2\(x-1\)
= - \(x^2\) - 2\(x\) + (3 -1)
= - \(x^2\) - 2\(x\) + 2
\(x^2\) - \(x\) + 3.(\(x-1\)) = 0
\(x\left(x-1\right)\) + 3(\(x-1\)) = 0
(\(x-1\))\(\left(x+3\right)\) = 0
\(\left[{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-3; 1}
C = 1 - \(\dfrac{\left(x+3\right)\left(x+5\right)}{2}\)
C = 1 - \(\dfrac{x^2+5x+3x+15}{2}\)
C = 1 - \(\dfrac{x^2+\left(5x+3x\right)+15}{2}\)
C = 1 - \(\dfrac{x^2+8x+16-1}{2}\)
C = 1 - \(\dfrac{\left(x^2+2.x.4+4^2\right)}{2}\) + \(\dfrac{1}{2}\)
C = (1 + \(\dfrac{1}{2}\)) - \(\dfrac{\left(x+4\right)^2}{2}\)
C = \(\dfrac{3}{2}\)- \(\dfrac{\left(x+4\right)^2}{2}\)
Vì (\(x+4\))2 ≥ 0 \(\forall\) \(x\) ⇒ - \(\dfrac{1}{2}\)(\(x+4\))2 ≤ 0 ∀ \(x\)
⇒ \(\dfrac{3}{2}\) - \(\dfrac{\left(x+4\right)^2}{2}\) ≤ \(\dfrac{3}{2}\) dấu bằng xảy ra khi \(x+4\) = 0 ⇒ \(x=-4\)
Vậy giá trị lớn nhất của biểu thức C là \(\dfrac{3}{2}\) xảy ra khi \(x=-4\)
\(x^3\) - \(x-y\) + y3
= (\(x^3\) + y3) - (\(x+y\))
= (\(x+y\)).(\(x^2\) - \(xy\) + y2) - (\(x+y\))
= (\(x+y\)).(\(x^2\) - \(xy+y^2\) - 1)
\(x^3-x-y+y^3\)
\(=\left(x^3+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
mn giúp e với em quên cách làm rồi
BCNN(28; 30; 2)
28 = 2\(^2\).7; 30 = 2.3.5; 2 = 2
BCNN(28; 30; 2) = 2\(^2.3.5.7\) = 420
BCNN(25; 30; 3)
25 = 5\(^2\) ; 30 = 2.3.5; 3 = 3
BCNN(25; 30; 3) = 2.5\(^2\).3 = 150
BCNN(30; 35; 6; 3)
30 = 2.3.5; 35 = 5.7; 6 = 2.3; 3 = 3
BCNN(30; 35; 6; 3) = 2.3.5.7 = 210