K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2023

\(A=\dfrac{bc}{8a^2}+\dfrac{ca}{b^2}+\dfrac{ab}{c^2}\)

\(=\dfrac{\left(bc\right)^3+8\left(ca\right)^3+8\left(ab\right)^3}{8\left(abc\right)^2}\)

\(=\dfrac{\left(bc\right)^3+\left(2ca\right)^3+\left(2ab\right)^3}{8\left(abc\right)^2}\)

\(=\dfrac{\left(bc\right)^3+\left(2ab+2ca\right)^3-3.2ca.2ab\left(2ab+2ca\right)}{8\left(abc\right)^2}\)

\(=\dfrac{\left(bc\right)^3+\left(-bc\right)^3-3.2ca.2ab.\left(-bc\right)}{8\left(abc\right)^2}\)

\(=\dfrac{12\left(abc\right)^2}{8\left(abc\right)^2}=\dfrac{12}{8}\)

24 tháng 11 2023

kkkk

23 tháng 11 2023

Ta có: 1262=126.126=(123+3).126=123.126+3.126=123.126+378

           123.129= 123.(126+3)=123.126+123.3=123.126+369

       Vì 378>369 nên 123.126+378>123.126+369

⇒ 1262>123.129 hay 123.129<1262

DS
23 tháng 11 2023

Ta có: a + b = 1

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)3 - 3ab(a + b) + 3ab[(a + b)2 - 2ab] + 6a2 b2 (a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2 b2

= 1 - 3ab + 3ab - 6a2 b2 + 6a2 b2

= 1
nhwos tick nha :D

24 tháng 11 2023

M=a3+b3+3ab(a2+b2)+6a2b2(a+b)�=�3+�3+3��(�2+�2)+6�2�2(�+�)

Biến đổi:

a2+b2=a2+2ab+b22ab=(a+b)22ab�2+�2=�2+2��+�2−2��=(�+�)2−2��

a3+b3=(a+b)(a2ab+b2)�3+�3=(�+�)(�2−��+�2)

Thay a+b=1�+�=1 và phần biến đổi vào biểu thức, ta được:

M=(a+b)(a2ab+b2)+3ab.[(a+b)22ab]+6a2b2�=(�+�)(�2−��+�2)+3��.[(�+�)2−2��]+6�2�2

M=a2ab+b2+3ab.[12ab]+6a2b2⇒�=�2−��+�2+3��.[1−2��]+6�2�2

M=a2ab+b2+3ab6a2b2+6a2b2⇒�=�2−��+�2+3��−6�2�2+6�2�2

M=a2+2ab+b2⇒�=�2+2��+�2

M=(a+b)2⇒�=(�+�)2

M=1

 

23 tháng 11 2023

a) Để tính giá trị của biểu thức x^4 + y^4, ta có thể sử dụng công thức Newton về tổng lũy thừa của một đa thức. Theo công thức Newton, ta có: x^4 + y^4 = (x^2 + y^2)^2 - 2x^2y^2 Từ đó, ta có thể tính giá trị của biểu thức x^4 + y^4 theo a và b: x^4 + y^4 = (a^2 - 2b)^2 - 2(a - 2b)b b) Tương tự, để tính giá trị của biểu thức x^5 + y^5, ta có thể sử dụng công thức Newton về tổng lũy thừa của một đa thức. Theo công thức Newton, ta có: x^5 + y^5 = (x + y)(x^4 - x^3y + x^2y^2 - xy^3 + y^4) Từ đó, ta có thể tính giá trị của biểu thức x^5 + y^5 theo a và b: x^5 + y^5 = (a)(a^4 - a^3b + a^2b^2 - ab^3 + b^4)

23 tháng 11 2023

ccc

DT
23 tháng 11 2023

\(\dfrac{3x^2+6x+15}{x^2+2x+3}=\dfrac{3\left(x^2+2x+3\right)+6}{x^2+2x+3}\\ =3+\dfrac{6}{x ^2+2x+3}\)

Nhận thấy : \(x^2+2x+3=\left(x+1\right)^2+2\ge2\forall x\)

\(=>\dfrac{6}{x^2+2x+3}\le\dfrac{6}{2}=3\)

\(=>3+\dfrac{6}{x^2+2x+3}\le3+3=6\\ =>\dfrac{3x^2+6x+15}{x^2+2x+3}\le6\)

Dấu = xảy ra khi : x+1=0 hay x=-1

Vậy GTLN của đa thức là : 6 tại x = -1

23 tháng 11 2023

\(P=\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2+\left(z+\dfrac{1}{z}\right)^2-\left(x+\dfrac{1}{x}\right)\left(y+\dfrac{1}{y}\right)\left(z+\dfrac{1}{z}\right)\) 

Ta có: \(xyz=1\Rightarrow x=\dfrac{1}{yz}\) 

\(P=\left(\dfrac{1}{yz}+yz\right)^2+\left(y+\dfrac{1}{y}\right)^2+\left(z+\dfrac{1}{z}\right)^2-\left(yz+\dfrac{1}{yz}\right)\left(y+\dfrac{1}{y}\right)\left(z+\dfrac{1}{z}\right)\)

\(P=\dfrac{1}{y^2z^2}+2+1y^2z^2+y^2+2+\dfrac{1}{y^2}+z^2+2+\dfrac{1}{z^2}-\left(y^2z+z+\dfrac{1}{z}+\dfrac{1}{y^2z}\right)\left(z+\dfrac{1}{z}\right)\)

\(P=\dfrac{1}{y^2z^2}+y^2z^2+y^2+\dfrac{1}{y^2}+z^2+\dfrac{1}{z^2}+6-y^2z^2-y^2-z^2-1-1-\dfrac{1}{z^2}-\dfrac{1}{y^2}-\dfrac{1}{y^2z^2}\)\(P=\left(\dfrac{1}{y^2z^2}-\dfrac{1}{y^2z^2}\right)+\left(y^2z^2-y^2z^2\right)+\left(y^2-y^2\right)+\left(z^2-z^2\right)+\left(\dfrac{1}{y^2}-\dfrac{1}{y^2}\right)+\left(\dfrac{1}{z^2}-\dfrac{1}{z^2}\right)+4\)

\(P=4\)

Vậy: ...