K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2023

\(\sqrt{x+3}\) + \(\sqrt{9x+27}\) - \(\sqrt{4x-12}\) = 10  đk  \(x+3\) ≥ 0 ⇒ \(x\) ≥ -3

\(\sqrt{x+3}\) + \(\sqrt{9\left(x+3\right)}\) - \(\sqrt{4\left(x+3\right)}\) = 10

\(\sqrt{x+3}\) + 3\(\sqrt{x+3}\) - 2\(\sqrt{x+3}\) = 10

(1 + 3 - 2)\(\sqrt{x+3}\) = 10

2\(\sqrt{x+3}\) = 10

   \(\sqrt{x+3}\) = 10: 2

   \(\sqrt{x+3}\) = 5

    \(x+3\) = 10

    \(x\) = 10 - 3

    \(x\) = 7 ( thỏa mãn) 

Vậy \(x\) = 7

 

4 tháng 7 2023

\(\sqrt{x+2}\) + \(\sqrt{16x+32}\) - \(\sqrt{4x+8}\) = 16 (đk \(x\ge\) -2)

\(\sqrt{x+2}\) + \(\sqrt{16\left(x+2\right)}\) - \(\sqrt{4\left(x+2\right)}\) = 16

\(\sqrt{x+2}\) + 4\(\sqrt{x+2}\) - 2\(\sqrt{x+2}\) = 16

( 1 + 4 - 2)\(\sqrt{x+2}\) = 16

         3\(\sqrt{x+2}\) = 16

           \(\sqrt{x+2}\) = \(\dfrac{16}{3}\)

             \(x+2\) = \(\dfrac{256}{9}\)

             \(x\) = \(\dfrac{256}{9}\) - 2

            \(x\) = \(\dfrac{238}{9}\) (thỏa mãn)

Vậy \(x=\dfrac{238}{9}\)

 

      

4 tháng 7 2023

Ta thấy \(A-4=\dfrac{x+2\sqrt{x}+1}{\sqrt{x}}-4\) 

\(=\dfrac{x+2\sqrt{x}+1-4\sqrt{x}}{\sqrt{x}}\)

\(=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\) 

Do \(\left(\sqrt{x}-1\right)^2\ge0\) và \(\sqrt{x}>0\) nên \(\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\ge0\). ĐTXR \(\Leftrightarrow x=1\).

Như vậy \(A-4\ge0\) \(\Leftrightarrow A\ge4\)

(không phải là \(A>4\) như trong đề đâu nhé, dấu "=" vẫn có thể xảy ra nếu \(x=1\))

4 tháng 7 2023

A B C H M N

a/

Xét tg vuông ABH

\(AH^2=AM.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Xét tg vuông ACH có

\(AH^2=AN.AC\) (lý do như trên)

\(\Rightarrow AM.AB=AN.AC\)

b/

\(AN\perp AB;MH\perp AB\) => AN//MH

\(AM\perp AC;NH\perp AC\) => AM//NH

=> AMHN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một)

Mặt khác \(\widehat{A}=90^o\)

=> AMHN là HCN => AM=NH; AN=MH (cạnh đối HCN)

Xét tg vuông ABH và tg vuông ACH có

\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) )

=> tg ABH đồng dạng với tg ACH

\(\Rightarrow\left(\dfrac{AB}{AC}\right)^2=\dfrac{S_{ABH}}{S_{ACH}}\) (hai tg đồng dạng, tỷ số 2 diện tích bằng bình phương tỷ số đồng dạng)

\(\Rightarrow\left(\dfrac{AB}{AC}\right)^2=\dfrac{\dfrac{1}{2}.AB.MH}{\dfrac{1}{2}.AC.NH}\Rightarrow\dfrac{AB}{AC}=\dfrac{MH}{NH}\) lập phương 2 vế

\(\dfrac{AB^3}{AC^3}=\dfrac{MH^2.MH}{NH^2.NH}\) (1)

Xét tg vuông ABH

\(MH^2=BM.AM\) (trong tg vuông bình phương đường cao hạ tử đỉnh góc vuông bằng tích giữa hai hình chiếu của 2 cạnh góc vuông trên cạnh huyền) (2)

Xét tg vuông ACH, c/m tương tự

\(NH^2=CN.AN\) (3)

Thay (2) và (3) vào (1)

(1) \(\Leftrightarrow\dfrac{AB^3}{AC^3}=\dfrac{BM.AM.MH}{CN.AN.NH}\)

Mà AM = NH; AN = MH (cmt)

\(\Rightarrow\dfrac{AB^3}{AC^3}=\dfrac{BM}{CN}\)

3 tháng 7 2023

\(\dfrac{1}{\sqrt{x}+2}-\dfrac{2}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{4-x}\left(\text{đ}k\text{x}\text{đ}:x\ge0;x\ne4\right)\\ =\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{\sqrt{x}-2-2\sqrt{x}-4-\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{-2\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{-2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =-\dfrac{2}{\sqrt{x}-2}\)

3 tháng 7 2023

dk là x khác 4 mới đúng nhee 

3 tháng 7 2023

\(\sqrt{x}-2+\dfrac{10-x}{\sqrt{x}+2}\left(ĐKXĐ:x\ge0\right)\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)}+\dfrac{10-x}{\sqrt{x}+2}\)

\(=\dfrac{x-4+10-x}{\sqrt{x}+2}\)

\(=\dfrac{6}{\sqrt{x}+2}\)

\(=\dfrac{6\left(\sqrt{x}-2\right)}{x-4}\)

3 tháng 7 2023

\(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}+1\left(\text{đ}k\text{x}\text{đ}:x\ge0;x\ne1\right)\\=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}+1-\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\=\dfrac{\sqrt{x}+1-\sqrt{x}+1+x+\sqrt{x}-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\=\dfrac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x+1}\right)}\\=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\=1\)

3 tháng 7 2023

\(\dfrac{1}{\sqrt{3}-1}-\dfrac{1}{\sqrt{3}+1}\)

\(\Leftrightarrow\dfrac{\sqrt{3}+1}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\dfrac{\sqrt{3}-1}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

\(\Leftrightarrow\dfrac{\sqrt{3}+1-\sqrt{3}+1}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

\(\Leftrightarrow\dfrac{2}{3-1}\)

\(\Leftrightarrow1\)

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{9}=\dfrac{1}{AB^2}+\dfrac{1}{25}\)

\(\Leftrightarrow\dfrac{1}{AB^2}=\dfrac{16}{225}\)

\(\Leftrightarrow AB=\dfrac{15}{4}\)

\(AH.BC=AB.AC\)

\(3.BC=\dfrac{15}{4}.5\)

\(BC=6,25\)

\(CH=\dfrac{AC^2}{BC}=4\)

=> BH = 6,25 - 4 = 2,25