Câu 12. (2 điểm) Cho tam giác $ABC$ vuông tại $A, \, AB<AC$, đường cao $AH$. Kẻ $HD$ vuông góc với $AB$ tại $D, \, HE$ vuông góc với $AC$ tại $E$.
a) Tứ giác $ADHE$ là hình gì? Vì sao?
b) Tính diện tích của tứ giác $ADHE$ nếu $AD=4$ cm; $AH=5$ cm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì đồ thị hàm số y=ax+by=ax+b đi qua điểm A(−1;2)A(−1;2) nên ta có:
2=−1.a+b2=−1.a+b suy ra −a+b=2−a+b=2
Vi đồ thị hàm số y=ax+by=ax+b đi qua điểm B(1;4)B(1;4) nên ta có:
4=1.a+b4=1.a+b suy ra a+b=4(2)a+b=4(2)
Từ (1) và (2) ta tìm được a=1;b=3a=1;b=3
Vậy hàm số cần tìm là y=x+3y=x+3.
a)Thay x=2(TMDK) vào bt Q :
\(Q=\dfrac{2+1}{2^2-9}=-\dfrac{3}{5}\)
b) \(P=\dfrac{2x^2-1}{x^2+x}-\dfrac{x-1}{x}+\dfrac{3}{x+1}\\ =\dfrac{2x^2-1}{x\left(x+1\right)}-\dfrac{x-1}{x}+\dfrac{3}{x+1}\\ =\dfrac{2x^2-1-\left(x-1\right)\left(x+1\right)+3x}{x\left(x+1\right)}\\ =\dfrac{2x^2-1-\left(x^2-1\right)+3x}{x\left(x+1\right)}\\ =\dfrac{x^2+3x}{x\left(x+1\right)}=\dfrac{x\left(x+3\right)}{x\left(x+1\right)}=\dfrac{x+3}{x+1}\)
c) \(M=P.Q=\dfrac{x+3}{x+1}.\dfrac{x+1}{x^2-9}\\ =\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{1}{x-3}\)
\(M=-\dfrac{1}{2}\\ =>\dfrac{1}{x-3}=-\dfrac{1}{2}\\ =>x-3=-2\\ =>x=1\left(TMDK\right)\)
a) \(5\left(x+2y\right)-15x\left(x+2y\right)=\left(x+2y\right)\left(5-15x\right)\\ =5\left(x+2y\right)\left(1-3x\right)\)
b) \(4x^2-12x+9=\left(2x\right)^2-2.2x.3+3^2\\=\left(2x-3\right)^2\)
c) \(\left(3x-2\right)^3-3\left(x-4\right)\left(x+4\right)+\left(x-3\right)^3-\left(x+1\right)\left(x^2-x+1\right)\\ =27x^3-54x^2+18x-8-3\left(x^2-16\right)+x^3-9x^2+27x-27-\left(x^3+1\right)\\=27x^3-54x^2+18x-8-3x^2+48+x^3-9x^2+27x-27-x^3-1\\ =27x^3-57x^2+36x+12\\ =3\left(3x^3-19x^2+12x+4\right)\)
Theo hằng đẳng thức đáng nhớ:
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=4^3-3.3.4=28\)Lời giải:
$A=(x^2-2xy+y^2)+y^2+2x-6y+2028$
$=(x-y)^2+2(x-y)+(y^2-4y)+2028$
$=(x-y)^2+2(x-y)+1+(y^2-4y+4)+2023$
$=(x-y+1)^2+(y-2)^2+2023\geq 0+0+2023=2023$
Vậy $A_{\min}=2023$.
Giá trị này đạt tại $x-y+1=y-2=0$
$\Leftrightarrow y=2; x=1$
A=(x2−2xy+y2)+y2+2x−6y+2028
=(�−�)2+2(�−�)+(�2−4�)+2028=(x−y)2+2(x−y)+(y2−4y)+2028
=(�−�)2+2(�−�)+1+(�2−4�+4)+2023=(x−y)2+2(x−y)+1+(y2−4y+4)+2023
=(�−�+1)2+(�−2)2+2023≥0+0+2023=2023=(x−y+1)2+(y−2)2+2023≥0+0+2023=2023
Vậy �min=2023Amin=2023.
Giá trị này đạt tại �−�+1=�−2=0x−y+1=y−2=0
⇔�=2;�=1⇔y=2;x=1